Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Moleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2023
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2023
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sweet Wine Production from the Side-Stream of Industrial Corinthian Currant Processing: Product Quality, Antioxidant Capacity, and Volatilome

Authors: Iris Plioni; Eleni Michalopoulou; Athanasios Mallouchos; Stavros Plessas; Gerasimos Gotis; Argyro Bekatorou;

Sweet Wine Production from the Side-Stream of Industrial Corinthian Currant Processing: Product Quality, Antioxidant Capacity, and Volatilome

Abstract

In the frame of efforts to add value to the Mediterranean currant cultivation and processing sectors, which is essential for their sustainability, sweet wine production is proposed from the finishing side-stream (FSS) of premium quality Corinthian currants, involving complete fermentation using an alcohol-tolerant yeast followed by (i) the addition of FSS to extract sugars or (ii) syrup made from FSS to adjust sweetness. Wine was also made by (iii) ceasing fermentation at the desired sugar level by ethanol addition. The non-fortified wines had 15.2–15.5% ethanol, 115–145 g/L residual sugar, 7.2–7.6 g/L titratable acidity, low volatile acidity (VA; <0.33 g/L), 280–330 mg/L phenolic content (TPC) (as gallic acid), and 23.8–35.6 mg/L antioxidant capacity (AC) (as ascorbic acid). In total, 160 volatiles were identified by SPME GC-MS, including compounds derived from the grapes, the raisin drying, and the fermentation process. The non-fortified wines had better characteristics (mainly VA, AC, and TPC) than the fortified wine, while sweetness adjustment by FSS is the simplest and lowest cost method since it does not involve ethanol or syrup addition. The proposed methods can lead to good quality sweet wines with a characteristic fruity (grape/raisin) flavor that could be commercialized as specialty raisin beverages or liqueurs.

Keywords

phenolics, fortification, Carbohydrates, Organic chemistry, Wine, antioxidant capacity, Saccharomyces cerevisiae, Article, Antioxidants, raisins, QD241-441, Ribes, Vitis, Corinthian currants, Ethanol, antioxidant capacity; Corinthian currants; fortification; phenolics; raisins; side-stream; sweet wine; volatilome, Fermentation, side-stream, Sugars

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold