Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Processes
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control Strategy Based on Artificial Intelligence for a Double-Stage Absorption Heat Transformer

Authors: Suset Vázquez-Aveledo; Rosenberg J. Romero; Moisés Montiel-González; Jesús Cerezo;

Control Strategy Based on Artificial Intelligence for a Double-Stage Absorption Heat Transformer

Abstract

Thermal energy recovery systems have different candidates to mitigate CO2 emissions as recommended by the UN in its list of SDGs. One of these promising systems is thermal absorption transformers, which generally use lithium-water bromide as the working fluid. A Double Stage Heat Transformer (DSHT) is a thermal machine that allows the recovery of thermal energy at a higher temperature than it is supplied through the effect of steam absorption in a concentrated solution of lithium bromide. There are very precise thermodynamic models which allow us to calculate all the possible operating conditions of the DSHT. To perform the control of these systems, the use of Artificial Intelligence (AI) is proposed with two computational techniques—Fuzzy Logic (FL) and Artificial Neural Network (ANN)—to calculate in real-time the set of variables that maximize the product’s Gross Temperature Lift (GTL) and Coefficient of Performance (COP) in a DSHT. The values for Coefficient of Determination (R2), Mean Square Error Root (MRSE), and Mean Error Bias (MBE) for the two types of computational techniques were analyzed and compared with the purpose of identifying which of them may be more accurate to calculate the operating conditions (temperatures, pressures, concentration and flows) with the highest COP for an interval of the value of the temperature absorption entered by the user. The result of the analysis of the evaluated techniques concluded that the control strategy of a DSHT in real-time will be based on the precise calculation of the refrigerant flow in the second evaporator with a Neural Network of 30 neurons, 300 weights and 40 bias, as it is more accurate than the Fuzzy Logic technique. The goodness-of-fit for two computational techniques was evaluated as having an R2 higher than 0.98 for the provided data. Future AI controllers must be based on evaporator flow values with evaporator power at 3.9−04 kg/KJ.

Keywords

absorption heat transformer; heat pump; artificial neural network; fuzzy logic; artificial intelligence; aqueous lithium bromide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold