Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Processesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Processes
Article
License: CC BY
Data sources: Sygma
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Processes
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Processes
Article . 2023 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRTA Pubpro
Article . 2023
License: CC BY
Data sources: IRTA Pubpro
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-Temperature Vacuum Evaporation of Ammonia from Pig Slurry at Laboratory and Pilot-Plant Scale

Authors: Míriam Cerrillo; Miguel Moreno; Laura Burgos; Roberto Estéfano; David Coll; Javier Soraluce; Naeria Navarro; +2 Authors

Low-Temperature Vacuum Evaporation of Ammonia from Pig Slurry at Laboratory and Pilot-Plant Scale

Abstract

Livestock manure has a high ammonium content that can limit its direct application on soil as a fertiliser in nitrate-vulnerable zones. Treatment technologies that are able to extract ammonium from livestock manure allow it to be concentrated in small volumes, making it cheaper and easier to transport and use as fertiliser in crop areas where there is a deficit of nitrogen. This study proposed using low-temperature vacuum evaporation to treat pig slurry in order to obtain marketable products that can be used as fertilisers and help close the nitrogen cycle. Two different configurations and scales were used. The first was a seven-litre laboratory-scale evaporator complemented with a condenser, a condensate trapper, an acid trap and a vacuum pump operated at −90 kPa vacuum pressure and at three different temperatures: 50.1 ± 0.2 °C, 46.0 ± 0.1 °C and 45.3 ± 1.3 °C. The second, Ammoneva, is an on-farm pilot-scale evaporator (6.4 m3), capable of working in four-hour batches of 1 t of liquid fraction of pig slurry with an operating temperature of 40–45 °C and −80 kPa vacuum pressure. The laboratory-scale evaporator, which features several novel improvements focused on increasing ammonia recovery, showed a higher nitrogen removal efficiency from the liquid fraction of pig slurry than the on-farm pilot plant, achieving 84% at 50.1 °C operation, and recovering most of it in ammonia solution (up to 77% of the initial nitrogen), with 7% of the ammonia not recovered. The Ammoneva pilot plant achieved a treated liquid fraction with 41% of initial nitrogen on average, recovering 15% in the ammonia solution in the acid trap; so, the NH3 gas absorption step needs to be further optimised. However, due to the simplicity of the Ammoneva pilot plant, which is easily placed inside a 20-foot container, and the complete automation of the process, it is suitable as an on-farm treatment for decentralised pig slurry management. The implementation of the novel design developed at laboratory-scale could help further increase recovery efficiencies at the pilot-plant scale.

Country
Spain
Keywords

Vacuum, Pilot plant, Ammonium recovery, Àrees temàtiques de la UPC::Enginyeria civil::Impacte ambiental, Acid trap, 504, Fertiliser, Pig slurry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold