
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review

doi: 10.3390/pr11113219
Phase-change materials (PCMs) are becoming more widely acknowledged as essential elements in thermal energy storage, greatly aiding the pursuit of lower building energy consumption and the achievement of net-zero energy goals. PCMs are frequently constrained by their subpar heat conductivity, despite their expanding importance. This in-depth research includes a thorough categorization and close examination of PCM features. The most current developments in nanoencapsulated PCM (NEPCMs) techniques are also highlighted, along with recent developments in thermal energy storage technology. The assessment also emphasizes how diligently researchers have worked to advance the subject of PCMs, including the creation of devices with improved thermal performance using nano-enhanced PCMs (NEnPCMs). This review intends to highlight the progress made in improving the efficiency and efficacy of PCMs by providing a critical overview of these improvements. The paper concludes by discussing current challenges and proposing future directions for the continued advancement of PCMs and their diverse applications.
- Institut National de Recherches et d'Analyses Physico-chimiques Tunisia
- University of Hail Saudi Arabia
- Institut National de Recherches et d'Analyses Physico-chimiques Tunisia
- Fırat University Turkey
- University of Monastir Tunisia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
