
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods

doi: 10.3390/rs12121948
handle: 10366/155614
Geothermal energy is becoming essential to deal with the catastrophic effect of climate change. Although the totality of the Earth’s crust allows the exploitation of shallow geothermal resources, it is important to identify those areas with higher thermal possibilities. In this sense, geophysical prospecting plays a vital role in the recognition and estimation of potential geothermal resources. This research evaluates the geothermal conditions of a certain area located in the center of Spain. The evaluation is mainly based on geological and geophysical studies and, in particular, the Time Domain Electromagnetic Method and the Electrical Resistivity Tomography. Once we analyzed the geology and the historical thermal evidence near the study area, our geophysical results were used to define the geothermal possibilities from a double perspective. In relation to anomalous heat gradient, the identification of a fault and the contact with impermeable granitic materials at the depth of 180 m denotes a potential location for the extraction of groundwater. Regarding the common ground-source heat-pump uses, the analysis has allowed the determination of the most appropriate area for the location of the geothermal well field. Finally, the importance of accurately defining the position of the drillings was confirmed by using software GES-CAL.
- University of Salamanca Spain
Science, Q, geophysical prospecting, Geothermal energy, time domain electromagnetic method, potential well field location, Potential well field location, electrical resistivity tomography, geothermal energy, Time domain electromagnetic method, GES-CAL software, Geophysical prospecting, Electrical resistivity tomography
Science, Q, geophysical prospecting, Geothermal energy, time domain electromagnetic method, potential well field location, Potential well field location, electrical resistivity tomography, geothermal energy, Time domain electromagnetic method, GES-CAL software, Geophysical prospecting, Electrical resistivity tomography
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
