
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatiotemporal Patterns and Regional Differences in Soil Thermal Conductivity on the Qinghai–Tibet Plateau

doi: 10.3390/rs15041168
The Qinghai–Tibet Plateau is an area known to be sensitive to global climate change, and the problems caused by permafrost degradation in the context of climate warming potentially have far-reaching effects on regional hydrogeological processes, ecosystem functions, and engineering safety. Soil thermal conductivity (STC) is a key input parameter for temperature and surface energy simulations of the permafrost active layer. Therefore, understanding the spatial distribution patterns and variation characteristics of STC is important for accurate simulation and future predictions of permafrost on the Qinghai–Tibet Plateau. However, no systematic research has been conducted on this topic. In this study, based on a dataset of 2972 STC measurements, we simulated the spatial distribution patterns and spatiotemporal variation of STC in the shallow layer (5 cm) of the Qinghai–Tibet Plateau and the permafrost area using a machine learning model. The monthly analysis results showed that the STC was high from May to August and low from January to April and from September to December. In addition, the mean STC in the permafrost region of the Qinghai–Tibet Plateau was higher during the thawing period than during the freezing period, while the STC in the eastern and southeastern regions is generally higher than that in the western and northwestern regions. From 2005 to 2018, the difference between the STC in the permafrost region during the thawing and freezing periods gradually decreased, with a slight difference in the western hinterland region and a large difference in the eastern region. In areas with specific landforms such as basins and mountainous areas, the changes in the STC during the thawing and freezing periods were different or even opposite. The STC of alpine meadow was found to be most sensitive to the changes during the thawing and freezing periods within the permafrost zone, while the STC for bare land, alpine desert, and alpine swamp meadow decreased overall between 2005 and 2018. The results of this study provide important baseline data for the subsequent analysis and simulation of the permafrost on the Qinghai–Tibet Plateau.
- Chinese Academy of Science China (People's Republic of)
- Nanjing University of Information Science and Technology China (People's Republic of)
- University of Chinese Academy of Social Sciences China (People's Republic of)
- Northwest Institute of Eco-Environment and Resources China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
soil thermal conductivity, Science, Q, Qinghai–Tibet Plateau, climate change, machine learning, freeze–thaw period, permafrost
soil thermal conductivity, Science, Q, Qinghai–Tibet Plateau, climate change, machine learning, freeze–thaw period, permafrost
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
