Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying the Effects of Climate Change and Revegetation on Erosion-Induced Lateral Soil Organic Carbon Loss on the Chinese Loess Plateau

Authors: Jianqiao Han; Yawen Pan; Peiqing Xiao; Wenyan Ge; Pengcheng Sun;

Quantifying the Effects of Climate Change and Revegetation on Erosion-Induced Lateral Soil Organic Carbon Loss on the Chinese Loess Plateau

Abstract

Erosion-induced soil organic carbon (SOC) loss substantially affects the redistribution of global organic carbon. The Chinese Loess Plateau, the most severely eroded region on Earth, has experienced notable soil erosion mitigation over the last few decades, making it a hotspot for soil erosion studies. However, the overall rate of SOC loss and spatiotemporal evolution under changing environments remain unclear. In this study, we investigated SOC loss from 1982 to 2015 in the severely eroded Hetong region of the Chinese Loess Plateau by combining the Revised Universal Soil Loss Equation (RUSLE) model and the localized enrichment ratio function derived from field observations and attributed the changes in SOC loss to climate- and human-induced vegetation changes. The results showed that SOC loss in the Hetong region was 64.73 t·km−2·yr−1, 16.79 times higher than the global average. Over the past 34 years, SOC loss decreased by 23.84%, with a total reduction of more than 105.64 Tg C since the change-point year. Moreover, our study found that vegetation changes dominated the changes in SOC loss in the Hetong region, contributing 89.67% of the total reduction in SOC loss in the Hetong region. This study can inform carbon accounting and sustainable catchment management in regions that have experienced large-scale ecological restoration.

Keywords

climate change; Chinese Loess Plateau; remote sensing; soil organic carbon loss; vegetation restoration, remote sensing, soil organic carbon loss, climate change, Science, vegetation restoration, Q, Chinese Loess Plateau

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
gold
Related to Research communities
Energy Research