Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temporal Changes in Mediterranean Pine Forest Biomass Using Synergy Models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors

Authors: Edward A. Velasco Pereira; María A. Varo Martínez; Francisco J. Ruiz Gómez; Rafael M. Navarro-Cerrillo;

Temporal Changes in Mediterranean Pine Forest Biomass Using Synergy Models of ALOS PALSAR-Sentinel 1-Landsat 8 Sensors

Abstract

Currently, climate change requires the quantification of carbon stored in forest biomass. Synthetic aperture radar (SAR) data offers a significant advantage over other remote detection measurement methods in providing structural and biomass-related information about ecosystems. This study aimed to develop non-parametric Random Forest regression models to assess the changes in the aboveground forest biomass (AGB), basal area (G), and tree density (N) of Mediterranean pine forests by integrating ALOS-PALSAR, Sentinel 1, and Landsat 8 data. Variables selected from the Random Forest models were related to NDVI and optical textural variables. For 2015, the biomass models with the highest performance integrated ALS-ALOS2-Sentinel 1-Landsat 8 data (R2 = 0.59) by following the model using ALS data (R2 = 0.56), and ALOS2-Sentinel 1-Landsat 8 (R2 = 0.50). The validation set showed that R2 values vary from 0.55 (ALOS2-Sentinel 1-Landsat 8) to 0.60 (ALS-ALOS2-Sentinel 1-Landsat 8 model) with RMSE below 20 Mg ha−1. It is noteworthy that the individual Sentinel 1 (R2 = 0.49). and Landsat 8 (R2 = 0.47) models yielded equivalent results. For 2020, the AGB model ALOS2-Sentinel 1-Landsat 8 had a performance of R2 = 0.55 (validation R2 = 0.70) and a RMSE of 9.93 Mg ha−1. For the 2015 forest structural variables, Random Forest models, including ALOS PAL-SAR 2-Sentinel 1 Landsat 8 explained between 30% and 55% of the total variance, and for the 2020 models, they explained between 25% and 55%. Maps of the forests’ structural variables were generated for 2015 and 2020 to assess the changes during this period using the ALOS PALSAR 2-Sentinel 1-Landsat 8 model. Aboveground biomass (AGB), diameter at breast height (dbh), and dominant height (Ho) maps were consistent throughout the entire study area. However, the Random Forest models underestimated higher biomass levels (>100 Mg ha−1) and overestimated moderate biomass levels (30–45 Mg ha−1). The AGB change map showed values ranging from gains of 43.3 Mg ha−1 to losses of −68.8 Mg ha−1 during the study period. The integration of open-access satellite optical and SAR data can significantly enhance AGB estimates to achieve consistent and long-term monitoring of forest carbon dynamics.

Country
Spain
Keywords

570, polarization, biomass, Mediterranean pine plantations, Science, Q, ALOS, Textures, 620, biomass; ALOS; SENTINEL 1; LANDSAT 8; polarization; backscatter; textures; Mediterranean pine plantations, Backscatter, Polarization, Biomass, LANDSAT 8, backscatter, SENTINEL 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold