
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Utilizing Multi-Source Datasets for the Reconstruction and Prediction of Water Temperature in Lake Miedwie (Poland)

doi: 10.3390/rs16152753
Water temperature is a fundamental parameter of aquatic ecosystems. It directly influences most processes occurring within them. Hence, knowledge of this parameter’s behavior, based on long-term (reliable) observations, is crucial. Gaps in these observations can be filled using contemporary methodological solutions. Difficulties in reconstructing water temperature arise from the selection of an appropriate methodology, and overcoming them involves the proper selection of input data and choosing the optimal modeling approach. This study employed the air2water model and Landsat satellite imagery to reconstruct the water temperature of Lake Miedwie (the fifth largest in Poland), for which field observations conducted by the Institute of Meteorology and Water Management—National Research Institute ended in the late 1980s. The approach based on satellite images in this case yielded less accurate results than model analyses. However, it is important to emphasize the advantage of satellite images over point measurements in the spatial interpretation of lake thermal conditions. In the studied case, due to the lake’s shape, the surface water layer showed no significant thermal contrasts. Based on the model data, long-term changes in water temperature were determined, which historically (1972–2023) amounted to 0.20 °C per decade. According to the adopted climate change scenarios by the end of the 21st century (SSP245 and SSP585), the average annual water temperature will be higher by 1.8 °C and 3.2 °C, respectively. It should be emphasized that the current and simulated changes are unfavorable, especially considering the impact of temperature on water quality. From an economic perspective, Lake Miedwie serves as a reservoir of drinking water, and changes in the thermal regime should be considered in the management of this ecosystem.
- Yangzhou University China (People's Republic of)
- Huazhong Agricultural University China (People's Republic of)
- Adam Mickiewicz University in Poznań Poland
- Yangzhou University China (People's Republic of)
- University of Life Sciences in Poznań Poland
Science, Q, remote sensing, climate change, water temperature, lakes, Landsat
Science, Q, remote sensing, climate change, water temperature, lakes, Landsat
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
