Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Symbiotic Co-Culture of Scenedesmus sp. and Azospirillum brasilense on N-Deficient Media with Biomass Production for Biofuels

Authors: Contreras, José R.; Mata, Teresa M.; Cuellar-Bermudez, Sara P.; Caetano, Nídia S.; Chandra, Rashmi; Garcia-Perez, J. Saul; Muylaert, Koenraad; +1 Authors

Symbiotic Co-Culture of Scenedesmus sp. and Azospirillum brasilense on N-Deficient Media with Biomass Production for Biofuels

Abstract

The treatment of nitrogen-deficient agriculture wastewater, arising from the vegetable and fruit processing, is a significant problem that limits the efficiency of its biological treatment. This study evaluates the effectiveness of the symbiotic co-culture of Azospirillum brasilense and Scenedesmus sp., under two nitrogen levels (8.23 mg L−1 and 41.17 mg L−1) and mixing systems (aeration and magnetic stirring), aiming to simultaneously use the N-deficient media for their growth while producing biomass for biofuels. Microalgae growth and biomass composition, in terms of protein, carbohydrate and fatty acid contents, were evaluated at the end of the exponential growth phase (15 days after inoculation). Results show that the symbiotic co-culture of microalgae-bacteria can be effectively performed on nitrogen-deficient media and has the potential to enhance microalgae colony size and the fatty acid content of biomass for biofuels. The highest biomass concentration (103 ± 2 mg·L−1) was obtained under aeration, with low nitrogen concentration, in the presence of A. brasilense. In particular, aeration contributed to, on average, a higher fatty acid content (48 ± 7% dry weight (DW)) and higher colony size (164 ± 21 µm2) than mechanical stirring (with 39 ± 2% DW and 134 ± 21 µm2, respectively) because aeration contribute to better mass transfer of gases in the culture. Also, co-culturing contributed in average, to higher colony size (155 ± 21 µm2) than without A. brasilense (143 ± 21 µm2). Moreover, using nitrogen deficient wastewater as the culture media can contribute to decrease nitrogen and energy inputs. Additionally, A. brasilense is approved and already extensively used in agriculture and wastewater treatment, without known environmental or health issues, simplifying the biomass processing for the desired application.

Country
Portugal
Keywords

Nitrogen concentration, TJ807-830, Azospirillum brasilense, TD194-195, Scenedesmus sp., Renewable energy sources, microalgae-bacteria co-culturing, GE1-350, <i>Azospirillum brasilense</i>, <i>Scenedesmus</i> sp., Environmental effects of industries and plants, Environmental sciences, Microalgae-bacteria co-culturing, nitrogen concentration, Mixing system, mixing system

Powered by OpenAIRE graph
Found an issue? Give us feedback