Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Agent-Based Modeling of Sustainable Ecological Consumption for Grasslands: A Case Study of Inner Mongolia, China

Authors: Huimin Yan; Lihu Pan; Zhichao Xue; Lin Zhen; Xuehong Bai; Yunfeng Hu; He-Qing Huang;

Agent-Based Modeling of Sustainable Ecological Consumption for Grasslands: A Case Study of Inner Mongolia, China

Abstract

Sustainable ecosystem services consumption is of vital importance to the survival and development of human society. How to balance the conflicts between ecosystem protection and ecosystem services consumption by local residents has been a serious challenge, especially in ecologically vulnerable areas. To explore the reasonable ecosystem services consumption approaches of grassland ecosystems for sustainable land system management, this study takes Hulun Buir of the Inner Mongolia Autonomous Region as a case study region and develops an EcoC-G (ecological consumption of grassland) model based on herders’ livelihood behaviors using the agent-based model technique to simulate the dynamics of ecosystem pressure, livestock production, and living quality of herders under different grassland management scenarios over the next 30 years. The EcoC-G model links the supply and consumption of grassland ecosystem services by calculating the ecosystem net primary productivity (NPP) supply and household NPP consumption. The model includes three sub-models, namely, the individual status transferring sub-model, the households’ grassland-use decision sub-model, and the ecosystem pressure sub-model. In accordance with multi-objective grassland management practices, the following four land management scenarios were simulated: (1) baseline scenario, (2) increasing household’s living standard, (3) ecosystem protection, and (4) balancing living standard improvement with the protection of the ecosystem. The result indicates that by focusing on the NPP supply and consumption of the grassland ecosystem, the EcoC-G is capable of simulating the impacts of herders’ livelihood behaviors on grassland ecosystems. If timely grassland management strategies are implemented, it is possible to relieve the ecosystem pressure and improve the livelihood of local herders. The specific scenario simulation results are: (1) Under the current grassland management mode, the pasture could never be overgrazed, and herders could achieve the basic living standard, but the accumulated wealth decreased due to the decline of livestock. (2) With grazing control, herders can accumulate wealth by increasing the breeding amount and reducing the marketing rate, but the ecosystem consumption pressure can reach a maximum of 2.3 times. (3) With strict restrictions on the livestock number, the pressure on the ecosystem decreases; however, herders might not achieve basic living standards. (4) Modest regulation leads to rational ecological consumption intervals, meaning the ecosystem pressure will become stable and herders can gradually accumulate wealth with the achievement of basic living standards in advance.

Related Organizations
Keywords

Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, ecosystem services consumption, net primary productivity, GE1-350, ecosystem pressure, agent-based modeling (ABM), ecosystem services

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
gold