Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts

Authors: Konrad Bogner; Florian Pappenberger; Massimiliano Zappa;

Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts

Abstract

Reliable predictions of the energy consumption and production is important information for the management and integration of renewable energy sources. Several different Machine Learning (ML) methodologies have been tested for predicting the energy consumption/production based on the information of hydro-meteorological data. The methods analysed include Multivariate Adaptive Regression Splines (MARS) and various Quantile Regression (QR) models like Quantile Random Forest (QRF) and Gradient Boosting Machines (GBM). Additionally, a Nonhomogeneous Gaussian Regression (NGR) approach has been tested for combining and calibrating monthly ML based forecasts driven by ensemble weather forecasts. The novelty and main focus of this study is the comparison of the capability of ML methods for producing reliable predictive uncertainties and the application of monthly weather forecasts. Different skill scores have been used to verify the predictions and their uncertainties and first results for combining the ML methods applying the NGR approach and coupling the predictions with monthly ensemble weather forecasts are shown for the southern Switzerland (Canton of Ticino). These results highlight the possibilities of improvements using ML methods and the importance of optimally combining different ML methods for achieving more accurate estimates of future energy consumptions and productions with sharper prediction uncertainty estimates (i.e., narrower prediction intervals).

Keywords

Environmental effects of industries and plants, predictive uncertainty, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, machine learning, GE1-350, monthly forecasts

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research