
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok

doi: 10.3390/su11185087
The increasing global temperature has induced many states to limit carbon dioxide emissions. The European Union (EU) promotes replacing boilers with heat pumps. However, in countries where electricity is mainly supplied through fossil fuel combustion, condensing gas boilers may prove to be more ecological heat generators. Although this problem was investigated in a particular situation, an algorithm can be applied elsewhere. The running expenditures for the following different heat generators that are available in a location were estimated: water heat pump, brine heat pump, air heat pump, condensing gas boiler, condensing oil boiler, district heat network, and electrical grid. Furthermore, carbon dioxide emissions from local and distant sources were evaluated. The computations were based on hourly averaged external temperature measurements, which were performed by the Institute of Meteorology and Water Management—National Research Institute (IMGW-PIB) in a weather station in Białystok (Poland) for a ten-year period. Compared with a condensing gas boiler system, the air-to-water heat pump has higher operating costs and higher CO2 emissions. The brine heat pump (closed-loop ground-source heat pump) has lower operating costs, but higher CO2 emissions than the gas boiler system. The water heat pump (groundwater source heat pump) has the lowest operating costs and CO2 emissions of all the systems studied in this paper.
Environmental effects of industries and plants, brine heat pump, TJ807-830, air heat pump, TD194-195, Renewable energy sources, Environmental sciences, seasonal coefficient of performance, carbon dioxide emissions, GE1-350, water heat pump
Environmental effects of industries and plants, brine heat pump, TJ807-830, air heat pump, TD194-195, Renewable energy sources, Environmental sciences, seasonal coefficient of performance, carbon dioxide emissions, GE1-350, water heat pump
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
