Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating the Effect of Prosopis juliflora, an Alien Invasive Species, on Land Cover Change Using Remote Sensing Approach

Authors: Maher J. Tadros; Amani Al-Assaf; Yahia A. Othman; Zeyad Makhamreh; Hatem Taifour;

Evaluating the Effect of Prosopis juliflora, an Alien Invasive Species, on Land Cover Change Using Remote Sensing Approach

Abstract

Invasive plant species (IPS) affect people’s livelihoods and well-being by providing both benefits and costs in different contexts. The objective of this study was to investigate the impact of Prosopis juliflora invasion on land cover change using ground survey and satellite sensor data derived from Landsat ETM+. The study was conducted at Sweimeh, Jordan Valley, between 1999 and 2017. The overall classification accuracy of remotely sensed data was 86% for 1999 and 80% for 2017. Accordingly, a remote sensing approach has the potential to assess land change/cover and aid in monitoring the IPS, specifically Prosopis invasion. Change detection analysis of Landsat classes (i.e., 1999 and 2017) showed that bare soil, urban, and water surface areas decreased by 6%, 11%, and 3%, respectively. Conversely, the vegetation class (i.e., IPS and native plants) increased by 20%. Ground surveys in 1999 and 2017 showed that the average vegetation area in Sweimeh invaded by Prosopis was approximately 60% in 1999 and 70% in 2017. Accordingly, the total estimated area invaded by P. juliflora at Sweimeh (2106 ha) in 1999 was approximately 92 ha, while Prosopis coverage in the same region was approximately 413 ha in 2017. The high emergence rate, the adaptation to high temperatures and low precipitation as well as governmental regulations which restrict the removal of trees, including IPS, were the main factors that prompted the extreme P. juliflora invasion in the Jordan Valley. The high invasion rate has led to a reduction in native species, including Tamarix spp., and dried up five natural water springs in the area. Overall, a monitoring plan should be applied to control the invasion problem by Prosopis in the valley. In addition, the conservation regulations that deal with IPS should be revised to mitigate the IPS risk.

Keywords

Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, <i>Tamarix</i>, Environmental sciences, socio-economic, mesquite, GE1-350, Jordan Valley, Landsat, image classification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
gold