
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Renewable Energy-Aware Sustainable Cellular Networks with Load Balancing and Energy-Sharing Technique

doi: 10.3390/su12229340
With the proliferation of cellular networks, the ubiquitous availability of new-generation multimedia devices, and their wide-ranging data applications, telecom network operators are increasingly deploying the number of cellular base stations (BSs) to deal with unprecedented service demand. The rapid and radical deployment of the cellular network significantly exerts energy consumption and carbon footprints to the atmosphere. The ultimate objective of this work is to develop a sustainable and environmentally-friendly cellular infrastructure through compelling utilization of the locally available renewable energy sources (RES) namely solar photovoltaic (PV), wind turbine (WT), and biomass generator (BG). This article addresses the key challenges of envisioning the hybrid solar PV/WT/BG powered macro BSs in Bangladesh considering the dynamic profile of the RES and traffic intensity in the tempo-spatial domain. The optimal system architecture and technical criteria of the proposed system are critically evaluated with the help of HOMER optimization software for both on-grid and off-grid conditions to downsize the electricity generation cost and waste outflows while ensuring the desired quality of experience (QoE) over 20 years duration. Besides, the green energy-sharing mechanism under the off-grid condition and the grid-tied condition has been critically analyzed for optimal use of green energy. Moreover, the heuristic algorithm of the load balancing technique among collocated BSs has been incorporated for elevating the throughput and energy efficiency (EE) as well. The spectral efficiency (SE), energy efficiency, and outage probability performance of the contemplated wireless network are substantially examined using Matlab based Monte–Carlo simulation under a wide range of network configurations. Simulation results reveal that the proper load balancing technique pledges zero outage probability with expected system performance whereas energy cooperation policy offers an attractive solution for developing green mobile communications employing better utilization of renewable energy under the proposed hybrid solar PV/WT/BG scheme.
- University of Ottawa Canada
- Sejong University Korea (Republic of)
- University of Ottawa Canada
- University of Ottawa (Université dOttawa) Canada
- University of Ottawa (Université dOttawa) Canada
Environmental effects of industries and plants, load balancing, TJ807-830, sustainability, TD194-195, renewable energy, green cellular network, spectral efficiency, Renewable energy sources, Environmental sciences, energy-sharing, GE1-350, energy efficiency, outage probability
Environmental effects of industries and plants, load balancing, TJ807-830, sustainability, TD194-195, renewable energy, green cellular network, spectral efficiency, Renewable energy sources, Environmental sciences, energy-sharing, GE1-350, energy efficiency, outage probability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
