

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Connection of Solar Activities and Forest Fires in 2018: Events in the USA (California), Portugal and Greece

doi: 10.3390/su122410261
The impact of solar activity on environmental processes is difficult to understand and complex for empirical modeling. This study aimed to establish forecast models of the meteorological conditions in the forest fire areas based on the solar activity parameters applying the neural networks approach. During July and August 2018, severe forest fires simultaneously occurred in the State of California (USA), Portugal, and Greece. Air temperature and humidity data together with solar parameters (integral flux of solar protons, differential electron flux and proton flux, solar wind plasma parameters, and solar radio flux at 10.7 cm data) were used in long short-term memory (LSTM) recurrent neural network ensembles. It is found that solar activity mostly affects the humidity for two stations in California and Portugal (an increase in the integral flux of solar protons of > 30 MeV by 10% increases the humidity by 3.25%, 1.65%, and 1.57%, respectively). Furthermore, an increase in air temperature of 10% increases the humidity by 2.55%, 2.01%, and 0.26%, respectively. It is shown that temperature is less sensitive to changes in solar parameters but depends on previous conditions (previous increase of 10% increases the current temperature by 0.75%, 0.34%, and 0.33%, respectively). Humidity in Greece is mostly impacted by solar flux F10.7 cm and previous values of humidity. An increase in these factors by 10% will lead to a decrease in the humidity of 3.89% or an increase of 1.31%, while air temperature mostly depends on ion temperature. If this factor increases by 10%, it will lead to air temperature rising by 0.42%.
- University of Belgrade Serbia
- Serbian Academy of Sciences and Arts Serbia
- National Research Mordovia State University Russian Federation
- Bukovinian State Medical University Ukraine
- Wenzhou University China (People's Republic of)
Environmental effects of industries and plants, TJ807-830, 600, TD194-195, Renewable energy sources, Environmental sciences, LSTM ensemble, forest fires, GE1-350, recurrent neural networks, solar activity
Environmental effects of industries and plants, TJ807-830, 600, TD194-195, Renewable energy sources, Environmental sciences, LSTM ensemble, forest fires, GE1-350, recurrent neural networks, solar activity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 78 download downloads 53 - 78views53downloads
Data source Views Downloads DAIS - Digitalni arhiv izdanja SANU 78 53


