
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Harvesting Waste Thermal Energy Using a Surface-Modified Carbon Fiber-Based Thermo-Electrochemical Cell

doi: 10.3390/su13031377
An important direction in the development of energy saving policy is harvesting and conversion into electricity of low-grade waste heat. The present paper is devoted to the improvement of the efficiency of thermo-electrochemical cells based on carbon fiber electrodes and potassium ferri-/ferrocyanide redox electrolyte. The influence of the carbon fiber electrode surface modification (magnetron deposition of silver and titanium or infiltration implantation of nanoscale titanium oxide) on the output power and parameters of the impedance equivalent scheme of a thermo-electrochemical cell has been studied. Two kinds of cell designs (a conventional electrochemical cell with a salt bridge and a coin cell-type body) were investigated. It was found that the nature of the surface modification of electrodes can change the internal resistance of the cell by three orders of magnitude. The dependence of the equivalent scheme parameters and output power density of the thermoelectric cell on the type of electrode materials was presented. It was observed that the maximum power for carbon fiber modified with titanium metal and titanium oxide was 25.2 mW/m2 and the efficiency was 1.37%.
- Yuri Gagarin State Technical University of Saratov Russian Federation
- University of Technology Russian Federation
- Plekhanov Russian University of Economics Russian Federation
- National University of Science and Technology Russian Federation
- Yuri Gagarin State Technical University of Saratov Russian Federation
Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, thermo-electrochemical cell, carbon fiber, Environmental sciences, efficiency, waste heat harvesting, GE1-350, surface modification
Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, thermo-electrochemical cell, carbon fiber, Environmental sciences, efficiency, waste heat harvesting, GE1-350, surface modification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
