
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Post-Disaster Infrastructure Delivery for Resilience

doi: 10.3390/su13063458
handle: 10072/415640
As climate change increases the frequency and intensity of disasters and associated infrastructure damage, Alternative Project Delivery Methods are well positioned to enable innovative contracting and partnering methods for designing and delivering adaptation solutions that are more time- and cost-effective. However, where conventional “build-back-as-before” post-disaster reconstruction occurs, communities remain vulnerable to future disasters of similar or greater magnitude. In this conceptual paper, we draw on a variety of literature and emergent practices to present how such alternative delivery methods of reconstruction projects can systematically integrate “build-back-better” and introduce more resilient infrastructure outcomes. Considering existing knowledge regarding infrastructure resilience, post-disaster reconstruction and project delivery methods, we consider the resilience regimes of rebound, robustness, graceful extensibility, and sustained adaptability to present the potential for alternative project delivery methods to improve the agility and flexibility of infrastructure against future climate-related and other hazards. We discuss the criticality of continued pursuit of stakeholder engagement to support further improvements to project delivery methods, enabling new opportunities for engaging with a broader set of stakeholders, and for stakeholders to contribute new knowledge and insights to the design process. We conclude the significant potential for such methods to enable resilient infrastructure outcomes, through prioritizing resilience alongside time and cost. We also present a visual schematic in the form of a framework for enabling post-disaster infrastructure delivery for resilience outcomes, across different scales and timeframes of reconstruction. The findings have immediate implications for agencies managing disaster recovery efforts, offering decision-support for improving the adaptive capacity of infrastructure, the services they deliver, and capacities of the communities that rely on them.
- Griffith University Australia
- Arizona State University United States
- Griffith University Australia
Environmental Studies, TJ807-830, TD194-195, Renewable energy sources, disaster resilience, GE1-350, re-designing infrastructure, Green & Sustainable Science & Technology, Built environment and design, Science & Technology, Environmental effects of industries and plants, post-disaster recovery, stakeholder engagement, Environmental sciences, alternative project delivery methods, Life Sciences & Biomedicine, Environmental Sciences
Environmental Studies, TJ807-830, TD194-195, Renewable energy sources, disaster resilience, GE1-350, re-designing infrastructure, Green & Sustainable Science & Technology, Built environment and design, Science & Technology, Environmental effects of industries and plants, post-disaster recovery, stakeholder engagement, Environmental sciences, alternative project delivery methods, Life Sciences & Biomedicine, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
