Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemical and Biological Enhancement Effects of Biochar on Wheat Growth and Yield under Arid Field Conditions

Authors: Zarmeena Khan; Muhammad Habib ur Rahman; Ghulam Haider; Rabia Amir; Rao Muhammad Ikram; Shakeel Ahmad; Hannah Kate Schofield; +7 Authors

Chemical and Biological Enhancement Effects of Biochar on Wheat Growth and Yield under Arid Field Conditions

Abstract

Nitrogen (N) losses are prevalent under South East Asia’s due to high N fertilizer inputs, but low N fertilizer use efficiency. This leaves a large quantity of reactive N at risk of loss to the environment. Biochar has been found to reduce N losses across a variety of soil types, however, there is limited data available for semi-arid climates, particularly at a field-scale. Herein we present an exploration of the biological and chemical enhancement effects observed of a cotton stalk-based biochar on wheat growth and yield under arid field conditions. The biochar was treated with urea-N and biofertilizer (bio-power) in different treatment setups. The six experimental treatments included; (i) a full N dose “recommended for wheat crops in the region” (104 kg N ha−1) as a positive control; (ii) a half N dose (52 kg N ha−1); (iii) a half N dose + biofertilizer (4.94 kg ha−1) as a soil mixture; (iv) a half N dose + biofertilizer as a seed inoculation; (v) a full N dose as broadcast + biochar (5 t ha−1) inoculated with biofertilizer; and (vi) a full N dose loaded on biochar + biofertilizer applied as a soil mixture. The half dose N application or biofertilizer addition as soil mix/seed inoculated/biochar inoculation with biofertilizer caused reduced wheat growth and yield compared to the control (conventional N fertilization). However, co-application of chemically enhanced biochar (loaded with a full N dose) and biofertilizer as soil mixture significantly increased the crop growth rate (CGR) and leaf area index (LAI). A significantly higher crop growth and canopy development led to a higher light interception and radiation use efficiency (RUE) for total dry matter (TDM) and grain yield (11% greater than control) production compared to the control. A greater grain yield, observed for the full N dose loaded on biochar + biofertilizer applied as a soil mixture, is attributed to prolonged N availability as indicated by greater plant and soil N content at harvest and different crop growth stages, respectively. The present study has improved our understanding of how the application of nitrogen loaded biochar and biofertilizer as soil mixtures can synergize to positively affect wheat growth and soil-nitrogen retention under arid environmental conditions.

Keywords

Environmental effects of industries and plants, NH<sub>4</sub>-N, TJ807-830, food security, canopy growth, TD194-195, Renewable energy sources, Environmental sciences, NO<sub>3</sub><sup>−</sup>-N, wheat, IPAR, pollution, GE1-350, RUE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 1%
gold