
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Resilience Dynamic Assessment Based on Precursor Events: Application to Ship LNG Bunkering Operations

doi: 10.3390/su13126836
handle: 11567/1066899
The focus of the present paper is the development of a resilience framework suitable to be applied in assessing the safety of ship LNG (Liquefied Natural Gas) bunkering process. Ship propulsion considering LNG as a possible fuel (with dual fuel marine engines installed on board) has favored important discussions about the LNG supply chain and delivery on board to the ship power plant. Within this context, a resilience methodological approach is outlined, including a case study application, to demonstrate its actual effectiveness. With specific reference to the operative steps for LNG bunkering operations in the maritime field, a dynamic model based on Bayesian inference and MCMC simulations can be built, involving the probability of operational perturbations, together with their updates based on the hard (failures) and soft (process variables deviations) evidence emerging during LNG bunkering operations. The approach developed in this work, based on advanced Markov Models and variational fitting algorithms, has proven to be a useful and flexible tool to study, analyze and verify how much the perturbations of systems and subsystems can be absorbed without leading to failure.
- University of Genoa Italy
decision support system, dynamic risk management, Environmental effects of industries and plants, Bayesian inference; Decision support system; Dynamic risk management; LNG ship propulsion; Resilience engineering, Bayesian inference, TJ807-830, TD194-195, resilience engineering, Renewable energy sources, Environmental sciences, LNG ship propulsion, GE1-350
decision support system, dynamic risk management, Environmental effects of industries and plants, Bayesian inference; Decision support system; Dynamic risk management; LNG ship propulsion; Resilience engineering, Bayesian inference, TJ807-830, TD194-195, resilience engineering, Renewable energy sources, Environmental sciences, LNG ship propulsion, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
