Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard

Authors: Rossi F.; Chieco C.; Virgilio N. D.; Georgiadis T.; Nardino M.;

Is Agriculture Always a GHG Emitter? A Combination of Eddy Covariance and Life Cycle Assessment Approaches to Calculate C Intake and Uptake in a Kiwifruit Orchard

Abstract

While a substantial reduction of GHG (greenhouse gases) is urged, large-scale mitigation implies a detailed and holistic knowledge on the role of specific cropping systems, including the effect of management choices and local factors on the final balance between emissions and removals, this last typical of cropping systems. Here, a conventionally managed irrigated kiwifruit orchard has been studied to assess its greenhouse gases emissions and removals to determine its potential action as a C sink or, alternately, as a C source. The paper integrates two independent approaches. Biological CO2 fluxes have been monitored during 2012 using the micrometeorological Eddy covariance technique, while life cycle assessment quantified emissions derived from the energy and material used. In a climatic-standard year, total GHG emitted as consequence of the management were 4.25 t CO2-eq−1 ha−1 yr−1 while the net uptake measured during the active vegetation phase was as high as 4.9 t CO2 ha−1 yr−1. This led to a positive contribution of the crop to CO2 absorption, with a 1.15 efficiency ratio (sink-source factor defined as t CO2 stored/t CO2 emitted). The mitigating activity, however, completely reversed under extremely unfavorable climatic conditions, such as those recorded in 2003, when the efficiency ratio became 0.91, demonstrating that the occurrence of hotter and drier conditions are able to compromise the capability of Actinidia to offset the GHG emissions, also under appropriate irrigation.

Country
Italy
Related Organizations
Keywords

Mitigation, TJ807-830, Carbon balance, TD194-195, <i>Actinidia deliciosa</i>, Renewable energy sources, Life cycle assessment, mitigation, life cycle assessment, GE1-350, efficiency ratio, carbon balance, Environmental effects of industries and plants, Actinidia deliciosa, emissions, Environmental sciences, Emissions, Irrigated agriculture, irrigated agriculture, Efficiency ratio

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold