Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biocontrol Activity of Aureubasidium pullulans and Candida orthopsilosis Isolated from Tectona grandis L. Phylloplane against Aspergillus sp. in Post-Harvested Citrus Fruit

Authors: Dalia Sukmawati; Nurul Family; Iman Hidayat; R. Sayyed; Elsayed Elsayed; Daniel Dailin; Siti Hanapi; +2 Authors

Biocontrol Activity of Aureubasidium pullulans and Candida orthopsilosis Isolated from Tectona grandis L. Phylloplane against Aspergillus sp. in Post-Harvested Citrus Fruit

Abstract

This study aimed to isolate and identify moulds from rotten Citrus sinensis post-harvests and to investigate the activity of antagonist and biocontrol activity moulds that cause citrus fruit rotting. A total of 12 mould isolates were obtained. Following the pathogenicity test, two representative mould isolates were selected and identified based on the sequence analyses of internal transcribed spacer (ITS) regions of the rDNA. Methods used in this study include isolation of fungal postharvest diseases, pathogenicity assay, antagonism assay, growth curve analysis, in vitro biocontrol assay, and molecular phylogenetic analysis. Two isolates of fungal postharvest diseases were determined as the most destructive pathogens. The biocontrol assay showed that isolates of Y1 and Y10 were capable to reduce the growth of fungal isolates K6 and K9 and mitigate up to 100% of the damage of sweet citrus fruits after 7 days of incubation. The moulds were identified as K6 (Aspergillus flavus sensu lato) and K9 (Aspergillus niger sensu lato). Phylogenetic analysis showed that the Y10 yeast isolate was identified as Candida orthopsilosis, whereas the Y1 isolate had a close genetic relationship with Aureobasidium pullulans and possibly belongs to a new species. Further analysis is necessary to confirm this finding.

Country
Malaysia
Keywords

580, Environmental effects of industries and plants, TJ807-830, TD194-195, TP Chemical technology, Renewable energy sources, post-harvest, Environmental sciences, <i>Aspergillus</i>, <i>Candida orthopsilosis</i>, GE1-350, biocontrol, <i>Aureobasidium pullulans</i>

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research