Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature

Authors: Carlos Peña-Guzmán; María Andrea Domínguez-Sánchez; Manuel Rodríguez; Rama Pulicharla; Karen Mora-Cabrera;

The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature

Abstract

COVID-19 is a terrible virus that has impacted human health and the economy on a global scale. The detection and control of the pandemic have become necessities that require appropriate monitoring strategies. One of these strategies involves measuring and quantifying the virus in water at different stages of the Urban Water Cycle (UWC). This article presents a comprehensive literature review of the analyses and quantifications of SARS-CoV-2 in multiple UWC components from 2020 to June 2021. More than 140 studies worldwide with a focus on industrialized nations were identified, mainly in the USA, Australia, and Asia and the European Union. Wastewater treatment plants were the focus of most of these studies, followed by city sewerage systems and hospital effluents. The fewest studies examined the presence of this virus in bodies of water. Most of the studies were conducted for epidemiological purposes. However, a few focused on viral load and its removal using various treatment strategies or modelling and developing strategies to control the disease. Others compared methodologies for determining if SARS-CoV-2 was present or included risk assessments. This is the first study to emphasize the importance of the various individual components of the UWC and their potential impacts on viral transmission from the source to the public.

Keywords

Environmental effects of industries and plants, COVID-19, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, monitoring, epidemiology, GE1-350, urban water cycle

Powered by OpenAIRE graph
Found an issue? Give us feedback