Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Hydrogeophysical Study of Sub-Basaltic Alluvial Aquifer in the Southern Part of Al-Madinah Al-Munawarah, Saudi Arabia

Authors: orcid Mohamed Metwaly;
Mohamed Metwaly
ORCID
Harvested from ORCID Public Data File

Mohamed Metwaly in OpenAIRE
orcid Fathy Abdalla;
Fathy Abdalla
ORCID
Harvested from ORCID Public Data File

Fathy Abdalla in OpenAIRE
Ayman I. Taha;

Hydrogeophysical Study of Sub-Basaltic Alluvial Aquifer in the Southern Part of Al-Madinah Al-Munawarah, Saudi Arabia

Abstract

Groundwater is extremely important in a water-scarce country such as Saudi Arabia, where permanent surface water resources are absent. Sustainable and future developments plans are essentially relying on the clear understanding of water resources. To evaluate the water resources in arid countries, the groundwater should be quantified through either traditional or scientifically advanced techniques. Aquifer characteristics, particularly the hydraulic conductivity and transmissivity, are essential for the evaluation the aquifer properties as well as the management and development of groundwater modelling for specific aquifers. The present study aims to evaluate the sub-basaltic alluvial aquifer in the northern part of Harrat Rahat, south of Al-Madinah city, and then estimates the principal aquifer’s hydraulic parameters based on the interpreted 1D resistivity-depth models along the study area. For that, 49 Vertical Electrical Soundings (VES’s) utilizing a Schlumberger electrode array were performed along the southern part of Al-Madinah city. The resistivity of the water-bearing formation, thickness, porosity, hydraulic conductivity, and transmissivity parameters were calculated along the measured longitudinal profile from the interpreted VES data. The estimated porosity, hydraulic conductivity, and transmissivity were achieved along the whole profile with average values of 0.2, 3.5 m/day, and 369.6 m2/day, respectively. The resulting transmissivity values from the VES models were compared with those of previous pumping test measurements carried out in the area and a reasonable correlation between the two data sets was observed. These results indicate that surface geoelectrical resistivity techniques may provide an alternative, rapid, and cost-effective method of estimating the aquifer hydraulic parameters where pumping data is rare or unavailable.

Keywords

porosity, transmissivity, Environmental effects of industries and plants, TJ807-830, TD194-195, Al-Madinah, Renewable energy sources, Environmental sciences, groundwater, Vertical Electrical Sounding, GE1-350, hydraulic conductivity

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold