Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems

Authors: Paola De Santis; Dejene K. Mengistu; Yosef Gebrehawaryat Kidane; Rose Nankya; Barbara De Santis; Gabriele Moracci; Francesca Debegnach; +2 Authors

Negligible Levels of Mycotoxin Contamination in Durum Wheat and Groundnuts from Non-Intensive Rainfed Production Systems

Abstract

Mycotoxins are chemical contaminants that are invisible, tasteless, chemically stable and survive food processing. Contamination along the agri-food chain is difficult to control since their production and spreading are due to numerous factors including temperature, relative humidity, insect infestation, and susceptibility of the host plant. This is a pilot study which aims at assessing the contamination level of deoxynivalenol (DON), and its plant metabolites (3AcDON, 15 AcDON, DON 3G), nivalenol, T-2 and HT-2 toxins, and ochratoxin A in thirty-seven traditional varieties of Ethiopian durum wheat, and aflatoxins B1, B2, G1, and G2 in thirty-one varieties of Ugandan groundnuts grown in non-intensive rainfed production systems. Results indicate absence of mycotoxin contamination in all durum wheat samples and negligible levels of contamination (below the maximum levels tolerated by international standards) in groundnut samples. Further studies are required to assess if non-intensive production systems and varieties have a role in preventing and/or reducing mycotoxin contamination of the crops.

Countries
France, Italy, France
Keywords

ochratoxin, aflatoxins, deoxynivalenol, vomitoxin, TJ807-830, TD194-195, Renewable energy sources, aflatoxins; deoxynivalenol; durum wheat; Ethiopia; genetic resources; intraspecific diversity; modern variety; nivalenol; non-intensive production system; ochratoxin; peanuts; traditional variety; Uganda, ochratoxins, peanuts, Uganda, GE1-350, modern variety, nivalenol, non-intensive production system, Environmental effects of industries and plants, durum wheat, aflatoxinas, vomitoxina, Environmental sciences, genetic resources, ocratoxinas, hard wheat, intraspecific diversity, traditional variety, Ethiopia

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research