
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Road Transport and Its Impact on Air Pollution during the COVID-19 Pandemic

doi: 10.3390/su132111803
This paper discusses the impact of the COVID-19 pandemic on air pollution. Many urban inhabitants were confined to their homes during the lockdown. This had an impact air pollution, due to a reduction the number of vehicles being operated in cities. People also limited the number of visits to shopping centers; additionally, sports venues were closed and cultural events cancelled. The COVID-19 pandemic therefore had a positive impact on air pollution. Several studies from around the world confirm this. The research presented here is based on hourly measurements of PM10 and NO2 concentrations measured in background ambient air at a specific intersection located in Uherske Hradiste, Czech Republic. The aim of the paper is to confirm or exclude the hypothesis that the measured concentrations of PM10 and NO2 pollutants were lower during 2020 than in 2019, when states of emergency related to the COVID-19 pandemic were declared. The data were aggregated into monthly subsets and statistically analyzed. The data was graphically visualized and evaluated by means of exploratory data analysis. To compare the pollution levels in individual months, a parametric statistical analysis (two-sample t-test) was used. A statistically significant reduction was observed in the measured concentrations in 2020 compared to 2019 during periods when states of emergency were declared.
- Tomas Bata University in Zlín Czech Republic
- Tomas Bata University in Zlín Czech Republic
nitrogen dioxide, air pollution, COVID-19 pandemic, TJ807-830, TD194-195, 333, Renewable energy sources, GE1-350, sustainable transport, Environmental effects of industries and plants, Environmental sciences, two-sample t-test, particulate matter PM<sub>10</sub>, particulate matter PM10, two-sample <i>t</i>-test
nitrogen dioxide, air pollution, COVID-19 pandemic, TJ807-830, TD194-195, 333, Renewable energy sources, GE1-350, sustainable transport, Environmental effects of industries and plants, Environmental sciences, two-sample t-test, particulate matter PM<sub>10</sub>, particulate matter PM10, two-sample <i>t</i>-test
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
