Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Production of Biodiesel from Spirogyra elongata, a Common Freshwater Green Algae with High Oil Content

Authors: Aasma Saeed; Muhammad Asif Hanif; Asma Hanif; Umer Rashid; Javed Iqbal; Muhammad Irfan Majeed; Bryan R. Moser; +1 Authors

Production of Biodiesel from Spirogyra elongata, a Common Freshwater Green Algae with High Oil Content

Abstract

The need for exploring nonfood low-cost sustainable sources for biodiesel production is ever increasing. Commercial and industrial algae cultivation has numerous uses in biodiesel production. This study explores S. elongata as a new algal feedstock for the production of biodiesel that does not compete with food production. The major fatty acids identified in S. elongata oil were oleic (30.5%), lauric (29.9%), myristic (17.0%), and palmitic (14.2%) acids. Transesterification to FAME was conducted using basic (KOH), acidic (HCl), and Zeolitic catalysts for assessment. The yields with acidic (54.6%) and zeolitic (72.7%) catalysts were unremarkable during initial screening. The highest biodiesel yield (99.9%) was achieved using KOH, which was obtained with the optimum reaction conditions of 1.0% catalyst, 60 °C, 4 h, and an oil-to-methanol volume ratio of 1:4. The resulting S. elongata oil methyl esters exhibited densities, CNs, and IVs, that were within the ranges specified in the American (ASTM D6751) and European (EN 14214) biodiesel standards, where applicable. In addition, the high SVs and the moderately high CPs and PPs were attributed to the presence of large quantities of short-chain and saturated FAME, respectively. Overall, the composition and properties of FAME prepared from S. elongaae oil indicate that S. elongata is suitable as an alternative algal feedstock for the production of biodiesel.

Keywords

Environmental effects of industries and plants, <i>Spirogyra elongate</i>, TJ807-830, biodiesel, cetane number, oil, TD194-195, Renewable energy sources, Environmental sciences, GCMS, GE1-350, fatty acid methyl esters

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold