
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Incorporating Future Climate Scenarios in Oil Industry’s Risk Assessment: A Greek Refinery Case Study

doi: 10.3390/su132212825
The impacts of climate change are anticipated to become stronger in the future, leading to higher costs and more severe accidents in the oil industry’s facilities and surrounding communities. Motivated by this, the main objective of this paper is to develop, for the oil industry, a risk assessment methodology that considers future climate projections. In the context of an action research effort, carried out in a refinery in Greece, we adapted the organization’s extant risk management approach based on the Risk Assessment Matrix (RAM) and suggested a risk quantification process that incorporates future climate projections. The Climate Risk Assessment Matrix (CRAM) was developed to be used to assess the exposure of the facility’s assets, including human resources, to future climate risks. To evaluate CRAM, a comparison with RAM for the specific organization for the period 1980–2004 was made. Next, the application of CRAM for the period 2025–2049 indicated that, even though the resilience of the operations of the company to extreme conditions seems adequate at present, increased attention should be paid in the future to the resilience of refinery processes, the cooling system, and human resources. Beyond the specific case, the paper provides lessons for similar organizations and infrastructures located elsewhere.
critical infrastructures, Environmental effects of industries and plants, TJ807-830, adaptation, TD194-195, Renewable energy sources, climate risk assessment, Environmental sciences, oil industry, climate change, risk matrix, GE1-350, resilience, hazards
critical infrastructures, Environmental effects of industries and plants, TJ807-830, adaptation, TD194-195, Renewable energy sources, climate risk assessment, Environmental sciences, oil industry, climate change, risk matrix, GE1-350, resilience, hazards
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
