Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Disciplinary Assessment of Napier Grass Plantation on Local Energetic, Environmental and Socioeconomic Industries: A Watershed-Scale Study in Southern Thailand

Authors: Kotchakarn Nantasaksiri; Patcharawat Charoen-amornkitt; Takashi Machimura; Kiichiro Hayashi;

Multi-Disciplinary Assessment of Napier Grass Plantation on Local Energetic, Environmental and Socioeconomic Industries: A Watershed-Scale Study in Southern Thailand

Abstract

Napier grass is an energy crop that is promising for future power generation. Since Napier grass has never been planted extensively, it is important to understand the impacts of Napier grass plantations on local energetic, environmental, and socioeconomic features. In this study, the soil and water assessment tool (SWAT) model was employed to investigate the impacts of Napier grass plantation on runoff, sediment, and nitrate loads in Songkhla Lake Basin (SLB), southern Thailand. Historical data, collected between 2009 and 2018 from the U-tapao gaging station located in SLB were used to calibrate and validate the model in terms of precipitation, streamflow, and sediment. The simulated precipitation, streamflow, and sediment showed agreement with observed data, with the coefficients of determination being 0.791, 0.900, and 0.997, respectively. Subsequently, the SWAT model was applied to evaluate the impact of land use change from the baseline case to Napier grass plantation cases in abandoned areas with four different nitrogen fertilizer application levels. The results revealed that planting Napier grass decreased the average surface runoff and sediment in the watershed. A multidisciplinary assessment supporting future decision making was conducted using the results obtained from the SWAT model; these showed that Napier grass will provide enhanced benefits to hydrology and water quality when nitrogen fertilizers of 0 and 125 kgN ha−1 were applied. On the other hand, the benefits to the energy supply, farmer’s income, and CO2 reduction were highest when a nitrogen fertilization of 500 kgN ha−1 was applied. Nonetheless, planting Napier grass should be supported since it increases the energy supply and creates jobs while also reducing surface runoff, sediment yield, nitrate load, and CO2 emission.

Keywords

Environmental effects of industries and plants, TJ807-830, SWAT model; water quality; hydrology; fertilizer application; Songkhla Lake Basin, hydrology, fertilizer application, TD194-195, water quality, Renewable energy sources, Environmental sciences, GE1-350, SWAT model, Songkhla Lake Basin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold