Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic

Authors: Liu G.; Huang Z.; Gao Y.; Wu M.; Liu C.; Chen C.; Lombardi G. V.;

A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic

Abstract

In order to achieve the goal of carbon neutrality and explore the impact of COVID-19 on urban road carbon emission, this study applied and improved a near real-time road carbon emission estimation method for typical Chinese urban agglomeration to improve the rapid evaluation of sustainable development. As a result, we recorded the daily road carbon emission for 12 cities in the Beijing–Tianjin–Hebei (JJJ) region under the impact of the epidemic, exploring the road carbon reduction effect caused by COVID-19. Singular value decomposition method was used to analyze the temporal and spatial characteristics of road carbon emission changes among cities and to explore the urban resilience oriented to public events. The results show: (1) In the JJJ region, the carbon reduction effect caused by COVID-19 is significant, but it lasted for a short time. In the three periods—before the epidemic, strict lockdown period, and post-lockdown period for prevention and control—the total daily road carbon emissions in the 12 cities were 170,000–190,000 tons, 90,000–110,000 tons, and 160,000–180,000 tons, respectively. (2) Cities in the JJJ region showed different road carbon reduction potential under short-term administrative control. During the “strict lockdown period” (23 January–25 February 2020), the average change rate of road carbon emissions in Beijing was −78.72%, which had great potential for reduction. However, the average change rates of Xingtai and Zhangjiakou were only −7.53% and −8.66%, respectively. (3) There are spatiotemporal differences in carbon emissions of urban roads in the JJJ region under the impact of the epidemic. During the gradual reduction of COVID-19 restrictions, great differences between cities on weekends and holidays arise, showing the road carbon emissions in Beijing on weekends and holidays are far lower than that in other cities. (4) In the face of public emergencies, the larger the city is and the more complex the function of the city is, the more difficult for the city is to maintain a steady state. This study not only provides an idea for the dynamic monitoring of urban carbon emissions to improve the rapid evaluation of urban sustainable development in post- and pre-lockdown but also fills the gap in the research on the differences in the response of cities to sudden security incidents from the perspective of road carbon emissions.

Country
Italy
Related Organizations
Keywords

Environmental effects of industries and plants, singular value decomposition, COVID-19, TJ807-830, COVID-19; Near real-time carbon emissions from roads; Singular value decomposition; Urban resilience, TD194-195, Renewable energy sources, Environmental sciences, urban resilience, near real-time carbon emissions from roads, COVID-19; near real-time carbon emissions from roads; singular value decomposition; urban resilience, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
gold