
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Role of Standards as an Enabler in a Digital Remanufacturing Industry

doi: 10.3390/su14031643
There is plenty of research describing remanufacturing (reman) as the ultimate form of recycling. However, few studies have shown how standards that provide universally accepted definitions and practices can shift towards digitization and how digital technology can act as a catalyst for digital reman. Furthermore, there is no clear direction as to why and how standards and digital technology should work together in reman. Only minimal research (one article from the SCOPUS database) has explored the intersection of these three areas: reman challenges, standards, and digital technology. Many challenges that reman companies face prevent them from successfully transitioning to sustainable production methods. The challenges include high cost of resources, complex parts design, limited core availability, lack of internationally accepted definitions and protocols, poor design of reverse logistics networks, and poor consumer perceptions. On the other hand, digital technology can act as an enabler fueling environmental resilience through innovation. This paper studies how standards can play a role in helping digital technology solve reman challenges, thereby achieving the United Nations Sustainable Development Goal and providing significant opportunities for innovation for small and large enterprises transitioning towards digital reman. The current study is validated by highly experienced reman professionals using the analytical hierarchical process. It is intended to help practitioners assess their organization’s current manufacturing practices and improve resource productivity and business growth using the identified standards and technologies. Three-dimensional printing was found to have the most potential in solving reman challenges. Surprisingly, the Internet of Things ranked low despite lacking information on used products or cores being a significant challenge for suppliers.
- T A Pai Management Institute India
- Manipal University India
- T A Pai Management Institute India
- The University of Texas at Dallas United States
- Manipal University India
reverse logistics, analytical hierarchical process, Environmental effects of industries and plants, digital, circular economy, TJ807-830, standards; remanufacturing; digital; reverse logistics; circular economy; analytical hierarchical process, TD194-195, remanufacturing, Renewable energy sources, Environmental sciences, standards, GE1-350
reverse logistics, analytical hierarchical process, Environmental effects of industries and plants, digital, circular economy, TJ807-830, standards; remanufacturing; digital; reverse logistics; circular economy; analytical hierarchical process, TD194-195, remanufacturing, Renewable energy sources, Environmental sciences, standards, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
