Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Analysis of Rankine Cycle Linear Fresnel Reflector and Solar Tower Plant Technologies: Techno-Economic Analysis for Ethiopia

Authors: Salah Kamel; Ephraim Bonah Agyekum; Tomiwa Sunday Adebayo; Ibrahim B. M. Taha; Bright Akwasi Gyamfi; Salam J. Yaqoob;

Comparative Analysis of Rankine Cycle Linear Fresnel Reflector and Solar Tower Plant Technologies: Techno-Economic Analysis for Ethiopia

Abstract

The need to meet the world’s growing demand for energy in an environmentally sustainable manner has led to the exploration of various renewable energy (RE) resources for power generation. The objective of this study is to examine the techno-economic potential of concentrated solar power plants (i.e., linear Fresnel reflector (LFR) and central receiver system (CRS) for electricity generation in Eastern African countries with a case study on Ethiopia. The study was conducted using the System Advisor Model (SAM). In order to estimate the economics of the two power plants, the Levelized cost of energy (LCOE) and the net present value (NPV) metrics were used. According to results obtained from the simulations, the LFR produced annual energy of 528 TWh at a capacity factor (CF) of 60.3%. The CRS also produced a total of 540 TWh at a CF of 61.9%. The LCOE (real) for the CRS is found to be 9.44 cent/kWh against 10.35 cent/kWh for the LFR. The NPV for both technologies is found to be positive for inflation rates of 2% and below. An inflation rate above 2% renders the two power plants financially impracticable. A real discount rate above 9% also renders both projects economically unviable. Based on the obtained results, the CRS system is identified as the best technology for electricity generation under the Jijiga climatic condition in Ethiopia.

Country
Russian Federation
Keywords

ETHIOPIA, POWER PLANT, TJ807-830, TD194-195, Renewable energy sources, solar multiple, concentrated solar power, SUSTAINABILITY, SOLAR MULTIPLE, COMPARATIVE STUDY, INFLATION, ELECTRICITY GENERATION, SOLAR POWER, GE1-350, levelized cost of energy; linear Fresnel reflector; solar multiple; concentrated solar power; Ethiopia, LEVELIZED COST OF ENERGY, ECONOMIC ANALYSIS, Environmental effects of industries and plants, ALTERNATIVE ENERGY, LINEAR FRESNEL REFLECTOR, DISCOUNT RATE, DEMAND ANALYSIS, Environmental sciences, linear Fresnel reflector, levelized cost of energy, Ethiopia, CONCENTRATED SOLAR POWER

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold