Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model

Authors: Yangyang Wang; Yu Xiao; Gaodi Xie; Jie Xu; Keyu Qin; Jingya Liu; Yingnan Niu; +3 Authors

Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model

Abstract

Ecosystem service research is essential to identify the contribution of the ecosystem to human welfare. As an important ecological barrier zone, the Qinghai-Tibet Plateau (QTP) supports the use of a crucial wind erosion prevention service (WEPS) to improve the ecological environment quality. This study simulated the spatiotemporal patterns of the WEPS based on the Revised Wind Erosion Equation (RWEQ) and its driving factors. From 2000 to 2015, the total WEPS provided in the QTP ranged from 1.75 × 109 kg to 2.52 × 109 kg, showing an increasing and then decreasing trend. The average WEPS service per unit area was between 0.72 kg m−2 and 1.06 kg m−2. The high-value areas were concentrated in the northwest and north of the QTP, and the total WEPS in different areas varied significantly from year to year. The average retention rate of the WEPS in the QTP was estimated to be 57.24–62.10%, and high-value areas were mainly located in the southeast of the QTP. The total monetary value of the WEPS in the QTP was calculated to be between 223.56 × 109 CNY and 321.73 × 109 CNY, and the average WEPS per unit area was between 0.08 CNY m−2 and 0.13 CNY m−2, showing a declining–rising–declining trend. The high-value areas gradually expanded to the west and east of the QTP. The slope was the most important factor controlling the spatial differentiation of the WEPS, followed by the landform type, average annual precipitation, and average annual wind speed, and human activities such as land-use change could improve the WEPS by returning farmland to grassland and desertification control in the QTP.

Related Organizations
Keywords

Environmental effects of industries and plants, revised wind erosion equation, TJ807-830, wind erosion prevention service, geo-detector, TD194-195, Renewable energy sources, Environmental sciences, wind erosion prevention service; revised wind erosion equation; geo-detector, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold