Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario

Authors: Jongsung Kim; Myungjin Lee; Heechan Han; Donghyun Kim; Yunghye Bae; Hung Soo Kim;

Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario

Abstract

Global climate models (GCMs) are used to analyze future climate change. However, the observed data of a specified region may differ significantly from the model since the GCM data are simulated on a global scale. To solve this problem, previous studies have used downscaling methods such as quantile mapping (QM) to correct bias in GCM precipitation. However, this method cannot be considered when certain variables affect the observation data. Therefore, the aim of this study is to propose a novel method that uses a convolution neural network (CNN) considering teleconnection. This new method considers how the global climate phenomena affect the precipitation data of a target area. In addition, various meteorological variables related to precipitation were used as explanatory variables for the CNN model. In this study, QM and the CNN models were applied to calibrate the spatial bias of GCM data for three precipitation stations in Korea (Incheon, Seoul, and Suwon), and the results were compared. According to the results, the QM method effectively corrected the range of precipitation, but the pattern of precipitation was the same at the three stations. Meanwhile, for the CNN model, the range and pattern of precipitation were corrected better than the QM method. The quantitative evaluation selected the optimal downscaling model, and the CNN model had the best performance (correlation coefficient (CC): 69% on average, root mean squared error (RMSE): 117 mm on average). Therefore, the new method suggested in this study is expected to have high utility in forecasting climate change. Finally, as a result of forecasting for future precipitation in 2100 via the CNN model, the average annual rainfall increased by 17% on average compared to the reference data.

Related Organizations
Keywords

teleconnection, Environmental effects of industries and plants, quantile mapping, TJ807-830, TD194-195, Renewable energy sources, convolution neural network, Environmental sciences, climate change; convolution neural network; spatial downscaling; teleconnection; quantile mapping, climate change, GE1-350, spatial downscaling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold