Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preservation and Recovery of Metal-Tolerant Fungi from Industrial Soil and Their Application to Improve Germination and Growth of Wheat

Authors: Mahnoor Akbar; Ahmed M. El-Sabrout; Shadi Shokralla; Eman A. Mahmoud; Hosam O. Elansary; Fizza Akbar; Burhan ud Din; +10 Authors

Preservation and Recovery of Metal-Tolerant Fungi from Industrial Soil and Their Application to Improve Germination and Growth of Wheat

Abstract

Heavy metals contaminate soil and adversely affect plant growth. These soils contain different fungi and bacteria which exhibit metal tolerance and work as bioremediation agents to detoxify polluted soils. In the present study, polluted soil samples were collected to estimate the contamination of copper (Cu) and cadmium (Cd). From this contaminated soil, metal tolerant fungi were isolated and characterized. Copper and cadmium were found in a range of 190.2–300.4 mg/kg and 46.8–56.1 mg/kg, respectively. For the isolation of metal tolerant fungi, soil dilutions were made in water and inoculated on potato dextrose agar (PDA) media. Fungal growth was observed on PDA and successive screening resulted in the isolation of four multi-metal tolerant fungal species, including Penicillim oxalicum, Fusarium solani, Aspergillus niger and Trichoderma harzianum. Sequencing of 18S rRNA genes of isolated fungi also efficiently identified them. To reveal minimum inhibitory concentrations (MIC), these fungi were exposed to increasing concentrations of cadmium and copper chlorides (100 to 1000 ppm) and a variable MIC range of 400 ppm to 1000 ppm was estimated. Based on tolerance index analysis, F. solani was found to be resistant at 1 mM copper, while P. oxalicum was the most tolerant species under cadmium stress. F. solani and P. oxalicum demonstrated the highest biosorption capacity of Cu and Cd, respectively. Both metals negatively affected wheat seedlings in a pot experiment, while the treatment of both F. solani and P. oxalicum positively influenced the germination and growth of wheat. Based on these observations, it could be inferred that F. solani and P. oxalicum can be used for the myco-remediation of Cu and Cd, respectively.

Keywords

metal tolerant fungi, Environmental effects of industries and plants, preservation, wheat germination, TJ807-830, TD194-195, wheat growth, industrial soil, Renewable energy sources, Environmental sciences, recovery, GE1-350, preservation; recovery; metal tolerant fungi; industrial soil; wheat germination; wheat growth

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold