Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models

Authors: Amuktamalyada Gorlapalli; Supriya Kallakuri; Pagadala Damodaram Sreekanth; Rahul Patil; Nirmala Bandumula; Gabrijel Ondrasek; Meena Admala; +6 Authors

Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models

Abstract

In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration and induces water stress in plants. The objective in this study was to characterize and forecast water stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation data for the period 1982–2021 was characterized by the standardized precipitation index (SPI) and modeled using the classical autoregressive integrated moving average (ARIMA) model and artificial intelligence (AI), i.e., artificial neural network (ANN) and support vector regression (SVR) model. The results show that on the short-term SPI3 time scale the studied region experienced extreme water deficit in 1983, 1992, 1993, 2007, 2015, and 2018, while on the mid-term SPI6 time scale, 1983, 1991, 2011, and 2016 were extremely dry. In addition, the prediction of drought at both SPI3 and SPI6 time scales by AI models outperformed the classical ARIMA models in both, training and validation data sets. Among applied models, the SVR model performed better than other models in modeling and predicting drought (confirmed by root mean square error—RMSE), while the Diebold–Mariano test confirmed that SVR output was significantly superior. A reduction in the prediction error of SVR by 48% and 32% (vs. ARIMA), and by 21% and 26% (vs. ANN) was observed in the test data sets for both SPI3 and SPI6 time scales. These results may be due to the ability of the SVR model to account for the nonlinear and complex patterns in the input data sets against the classical linear ARIMA model. These results may contribute to more sustainable and efficient management of water resources/stress in cropping systems.

Country
Croatia
Keywords

Environmental effects of industries and plants, SPI3, TJ807-830, drought; water stress; standardized precipitation index; SPI3; SPI6; artificial intelligence; auto-regressive integrated moving average; artificial neural network; support vector regression, auto-regressive integrated moving average, drought, SPI6, artificial intelligence, TD194-195, Renewable energy sources, standardized precipitation index, drought ; water stress ; standardized precipitation index ; SPI3 ; SPI6 ; artificial intelligence ; auto-regressive integrated moving average ; artificial neural network ; support vector regression, Environmental sciences, water stress, GE1-350, support vector regression, artificial neural network

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold