
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review

doi: 10.3390/su141711098
The extensive use of dyes in numerous industries results in massive dye discharge in the wastewater, which is a major cause of water pollution. Globally, the consumption of dyes is near seven hundred thousand tons across different sectors, of which around 10–15% goes into the wastewater. Among the dye kinds, anionic dyes make up the main proportion, having a 32–90% share in the wastewater. Different plant-derived wastes, which are sustainable given their natural abundance, effectiveness, and low cost, are frequently proposed for dye separation. However, these adsorbents are inherently more suitable for cationic dyes than anionic dyes. In recent years, the modification of these wastes has been progressively considered to suit them to anionic dye removal. These modifications involve mechanical, thermal, or chemical treatments, or combinations. These attempts propose two-way benefits, as one abundant waste is being used to cure another severe problem, and eventually both could be diminished. This review has a key focus on the evaluation of plant-derived adsorbents and their modifications, and particularly for anionic dye adsorption. Overall, the mechanism of adsorption and the suitability of the current methods are discussed, and their future potential is explored.
- Institute for Frontier Materials Deakin University Australia
- Institute for Frontier Materials Deakin University Australia
- Bangladesh University of Textiles Bangladesh
- Jagannath University Bangladesh
- Manchester Metropolitan University United Kingdom
diffusion and kinetics, natural biomass, Environmental effects of industries and plants, TJ807-830, Congo Red, TD194-195, Renewable energy sources, adsorption isotherm, Environmental sciences, lignocellulose, dye wastewater, GE1-350, 12 Built Environment and Design
diffusion and kinetics, natural biomass, Environmental effects of industries and plants, TJ807-830, Congo Red, TD194-195, Renewable energy sources, adsorption isotherm, Environmental sciences, lignocellulose, dye wastewater, GE1-350, 12 Built Environment and Design
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
