Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sapientia
Article . 2022
License: CC BY
Data sources: Sapientia
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microalgae Cultivated under Magnetic Field Action: Insights of an Environmentally Sustainable Approach

Authors: Kricelle Mosquera Deamici; Katarzyna Dziergowska; Pedro Garcia Pereira Silva; Izabela Michalak; Lucielen Oliveira Santos; Jerzy Detyna; Sunita Kataria; +3 Authors

Microalgae Cultivated under Magnetic Field Action: Insights of an Environmentally Sustainable Approach

Abstract

Microalgae and cyanobacteria include procaryotic and eucaryotic photosynthetic micro-organisms that produce biomass rich in biomolecules with a high value. Some examples of these biomolecules are proteins, lipids, carbohydrates, pigments, antioxidants, and vitamins. Currently, microalgae are also considered a good source of biofuel feedstock. The microalga-based biorefinery approach should be used to promote the sustainability of biomass generation since microalga biomass production can be performed and integrated into a circular bioeconomy structure. To include an environmentally sustainable approach with microalga cultures, it is necessary to develop alternative ways to produce biomass at a low cost, reducing pollution and improving biomass development. Different strategies are being used to achieve more productivity in cultivation, such as magnets in cultures. Magnetic forces can alter microalga metabolism, and this field of study is promising and innovative, yet remains an unexplored area. This review presents the current trends in the magnetic biostimulation of microalgae for the application of cultivated biomass in different areas of biotechnology, biofuel, and bioenergy production, as well as environmental protection.

Country
Portugal
Keywords

Chemical composition, TJ807-830, magnetic field, TD194-195, Renewable energy sources, Microalgae, chemical composition, GE1-350, environmental safety, Growth rate, Environmental effects of industries and plants, microalgae, algal biorefinery, Environmental sciences, Magnetic field, Sustainability, Algal biorefinery, Environmental safety, growth rate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 14
  • 11
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Top 10%
Average
Top 10%
11
14
Green
gold