Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2022
Data sources: VBN
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Indoor Occupancy Detection Based on Environmental Data Using CNN-XGboost Model: Experimental Validation in a Residential Building

Authors: Abolfazl Mohammadabadi; Samira Rahnama; Alireza Afshari;

Indoor Occupancy Detection Based on Environmental Data Using CNN-XGboost Model: Experimental Validation in a Residential Building

Abstract

Indoor occupancy prediction can play a vital role in the energy-efficient operation of building engineering systems and maintaining satisfactory indoor climate conditions at the lowest possible energy use by operating these systems on the basis of occupancy data. Many methods have been proposed to predict occupancy in residential buildings according to different data types, e.g., digital cameras, motion sensors, and indoor climate sensors. Among these proposed methods, those with indoor climate data as input have received significant interest due to their less intrusive and cost-effective approach. This paper proposes a deep learning method called CNN-XGBoost to predict occupancy using indoor climate data and compares the performance of the proposed method with a range of supervised and unsupervised machine learning algorithms plus artificial neural network algorithms. The comparison is performed using mean absolute error, confusion matrix, and F1 score. Indoor climate data used in this work are CO2, relative humidity, and temperature measured by sensors for 13 days in December 2021. We used inexpensive sensors in different rooms of a residential building with a balanced mechanical ventilation system located in northwest Copenhagen, Denmark. The proposed algorithm consists of two parts: a convolutional neural network that learns the features of the input data and a scalable end-to-end tree-boosting classifier. The result indicates that CNN-XGBoost outperforms other algorithms in predicting occupancy levels in all rooms of the test building. In this experiment, we achieved the highest accuracy in occupancy detection using inexpensive indoor climate sensors in a mechanically ventilated residential building with minimum privacy invasion.

Country
Denmark
Keywords

Occupancy detection, TJ807-830, mechanical ventilation, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production, TD194-195, occupancy detection; machine learning; CNN-XGboost; residential buildings; mechanical ventilation; indoor climate data, Indoor climate data, Renewable energy sources, Residential buildings, Mechanical ventilation, residential buildings, Machine learning, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, GE1-350, Environmental effects of industries and plants, CNN-XGboost, Environmental sciences, machine learning, occupancy detection, indoor climate data

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
gold