Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique

Authors: Manal A. Alnaimy; Sahar A. Shahin; Ahmed A. Afifi; Ahmed A. Ewees; Natalia Junakova; Magdalena Balintova; Mohamed Abd Elaziz;

Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique

Abstract

To meet the needs of Egypt’s rising population, more land must be cultivated. Land evaluation is vital to achieving sustainable agricultural production. To determine the soil capability in the northeast Nile Delta region of Egypt, the present study introduces a new form of integration between the Agriculture Land Evaluation System (ALES Arid) model and the machine learning (ML) approach. The soil capability indicators required for the ALES Arid model were determined for the 47 collected soil profiles covering the study area. These indicators include soil pH, soil salinity, the sodium adsorption ratio (SAR), the exchangeable sodium percentage (ESP), the organic matter (OM) content, the calcium carbonate (CaCO3) content, the gypsum content, the clay percentage, and the slope. The ALES Arid model was run using these indicators, and soil capability indexes were obtained. Using GIS, these indexes helped to classify the study area into four capability classes, ranging from good to very poor soils. To predict the soil capability, three machine learning algorithms named traditional RVFL, sine cosine algorithm (SCA), and AFO were also applied to the same soil criteria. The developed ML method aims to enhance the prediction of soil capability. This method depends on improving the performance of Random Vector Functional Link (RVFL) using an optimization technique named Aptenodytes Forsteri Optimization (AFO). The operators of AFO were used to determine the best parameters of RVFL since traditional RVFL is sensitive to parameters. To assess the performance of the developed AFO-RVFL method, a set of real collected data was used. The experimental results illustrate the high efficacy of AFO-RVFL in the spatial prediction of soil capability. The correlations found in this study are critical for understanding the overall techniques for predicting soil capability.

Keywords

Aptenodytes Forsteri Optimization, machine learning; Aptenodytes Forsteri Optimization; ALES Arid software; land capability prediction; soil mapping; land evaluation; arid regions, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, soil mapping, Environmental sciences, machine learning, ALES Arid software, land evaluation, land capability prediction, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold