
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Classification and Validation of Spatio-Temporal Changes in Land Use/Land Cover and Land Surface Temperature of Multitemporal Images

doi: 10.3390/su142315677
handle: 10831/113828
Land transfiguration is caused by natural as well as phylogenesis-driving forces, and its consequences for the regional environment are a significant issue in understanding the relationship between society and the environment. Land use/land cover plays a crucial part in the determination, preparation, and execution of administrative approaches to fulfilling basic human needs in the present day. In this study, Visakhapatnam, Vijayawada, Tirupati, A.P., India, is considered as a study area to explain the Land use/land cover (LULC) classification, Land Surface Temperature (LST), and the inverse correlation between LST and the NDVI of Temporal Landsat satellite images at intervals of 5 years from 2000 to 2020. We performed easy and thoroughgoing classifications based on vegetation phenology, using an extended LULC field database, a time series of LANDSAT satellite imagery, and a pixel-based classifier. In total, five land-use and land-cover types have been identified: dense vegetation, vegetation, built-up, barren land, and water. Over the period of inquiry, there were notable increases in the area of built-up land, dense vegetation, and vegetation, whereas there was a marked decrease in water bodies and barren land. The diverse effects of land transformation on the natural environment have been assessed using Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI). The used technique achieved very good levels of accuracy (90–97%) and a strong kappa coefficient (0.89–0.96), with low commission and omission errors. The variation of the land surface temperature was studied using the Mono-Window algorithm. Change detection, and the transition of the natural land cover to man-made land use, were statistically computed for the study area. Results exposed that there had been significant variations in the land use and cover during the tagged eras. In general, two land use and land cover change patterns were confirmed in the study zone: (i) compatible growth of the zone in built-up areas, barren land, plantations, and shrubs; and (ii) continual diminishment in agriculture and water; maximum urban development took place between 2000 to 2020. The results showed drastic changes in urbanization and decrements in vegetation that had environmental consequences.
- Lovely Professional University India
- Koneru Lakshmaiah Education Foundation India
- Lovely Professional University India
- Eötvös Loránd University Hungary
- "EOTVOS LORAND TUDOMANYEGYETEM Hungary
PCA, land use/land cover, Environmental effects of industries and plants, NDVI, OLI, TJ807-830, land use/land cover; remote sensing; NDVI; PCA; MWA; OLI; TIRS; LST, MWA, TD194-195, Renewable energy sources, Environmental sciences, remote sensing, GE1-350
PCA, land use/land cover, Environmental effects of industries and plants, NDVI, OLI, TJ807-830, land use/land cover; remote sensing; NDVI; PCA; MWA; OLI; TIRS; LST, MWA, TD194-195, Renewable energy sources, Environmental sciences, remote sensing, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
