Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preliminary Studies on Conversion of Sugarcane Bagasse into Sustainable Fibers for Apparel Textiles

Authors: Mohammed Jalalah; Zubair Khaliq; Zulfiqar Ali; Adnan Ahmad; Muhammad Bilal Qadir; Ali Afzal; Umer Ashraf; +5 Authors

Preliminary Studies on Conversion of Sugarcane Bagasse into Sustainable Fibers for Apparel Textiles

Abstract

Owing to increased environmental awareness and the implementation of stringent governmental regulations, the demand for the valorization of natural fibers has increased in recent years. Sugarcane bagasse after juice extraction could be a potential source of natural fibers to be used in textile applications. In this paper, sugarcane bagasse is converted to textile fibers. Sugarcane fibers are extracted through alkali and H2O2 treatment with varying concentrations (6, 10, 14) g/L and (8, 12, 16) g/L, respectively. To soften the fibers for textile use, extracted fibers were post-treated with a constant ratio of silicone softener (50 g/L). Treatment of sugarcane fibers with varying concentrations of alkali–H2O2 significantly influenced the fiber surface morphology. Furthermore, an increase in the crystallinity of extracted fibers was observed, whereas a reduction in fiber linear density from 54.82 tex to 45.13 tex as well as moisture regain (6.1% to 5.1%) was observed as the ratio of alkali–H2O2 treatment was increased. A notable improvement in overall mechanical strength was achieved upon alkali–H2O2 treatment, but at a higher concentration (conc.) there was a loss of mechanical strength, and the torsional and flexural rigidity also increased significantly. Based on the results, sugarcane fibers treated with 10 g/L NaOH, 12 g/L H2O2 and 50 g/L silicone softener showed the most optimum results. These sustainable fibers have the potential to be used in textile applications due to their enhanced softness, optimum moisture regain, and better mechanical properties.

Keywords

sustainable fibers; alkali treatment; hydrogen peroxide; sugarcane bagasse; textiles, Environmental effects of industries and plants, TJ807-830, sustainable fibers, hydrogen peroxide, TD194-195, sugarcane bagasse, Renewable energy sources, textiles, Environmental sciences, alkali treatment, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research