Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Organic Eprints
Article . 2023
Data sources: Organic Eprints
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Organic Carbon Content in Fractions of Soils Managed for Soil Fertility Improvement in Sub-Humid Agroecosystems of Kenya

Authors: Miriam Githongo; Milka Kiboi; Anne Muriuki; Andreas Fliessbach; Collins Musafiri; Felix K. Ngetich;

Organic Carbon Content in Fractions of Soils Managed for Soil Fertility Improvement in Sub-Humid Agroecosystems of Kenya

Abstract

Soil health and fertility are indexed by soil organic carbon (SOC) content. Soil management through good agricultural practices that enhance and sustain SOC is vital for soil fertility. We examined the influence of soil fertility management strategies on SOC concentrations in different particle size fractions under a maize cropping system. We laid the experiment in a randomized complete block design, with 14 treatments replicated 4 times, and used the following inputs: inorganic fertilizer (Mf), maize residue +inorganic fertilizer (RMf), maize residue + inorganic fertilizer, and goat manure (RMfM), maize residue + goat manure + Dolichos Lablab L intercrop (RML), maize residue + Tithonia diversifolia + goat manure (RTiM) and maize residue + Tithonia diversifolia + phosphate rock (Minjingu) (RTiP) and a Control (no inputs) under reduced tillage (Mt) or conventional tillage (Ct). Soil samples were collected from two depths, 0–5 cm, and 5–15 cm. We determined the content of organic carbon in three physical fractionation: coarse fractions (1.7 mm, 500 µm sieve), medium fractions (250 µm and 90 µm), and a fine fraction (75 µm). Results showed that treatment with maize residues, goat manure, and legume intercrop (MtRML and CtRML) resulted in higher SOC in most fractions, irrespective of the soil depth. The SOC concentration significantly (p < 0.0001) differed across treatments and depth. It was followed by maize residue, goat manure, and inorganic fertilizer treatments, and the least was inorganic fertilizer treatment. This underpins the importance of manure application and crop residue retention in increasing SOC amounts. Reduced tillage did not influence the SOC amounts during the sampling period in the experimentation site. This study highlights the possibility of improving agricultural productivity by improving soil fertility through a combination of different agricultural soil fertility amendments in Sub-Saharan Africa.

Keywords

soil particle size, soil particle size; organic inputs; inorganic inputs; tillage; organic matter, Environmental effects of industries and plants, organic inputs, TJ807-830, TD194-195, inorganic inputs, Soil quality, Soil tillage, Renewable energy sources, Environmental sciences, tillage, GE1-350, organic matter

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold