Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of Exhaust Temperature and Flow Velocity of Marine Diesel Engines on Exhaust Gas Boiler Heat Transfer Performance

Authors: Dezhi Jiang; Haoxian Yu; Zhihan Wang; Adam Glowacz; Grzegorz Królczyk; Zhixiong Li;

Influence of Exhaust Temperature and Flow Velocity of Marine Diesel Engines on Exhaust Gas Boiler Heat Transfer Performance

Abstract

Due to the relatively cheap price of diesel, most Marine engines use diesel as Marine fuel, but its emissions contain a lot of carbon. To reduce carbon emissions, International Maritime Organization (IMO) has established an Energy Efficiency Design Index (EEDI) and Energy Efficiency Existing-Ship Index (EEXI). Currently, a popular way is to reduce EEDI by optimizing the heat transfer performance of exhaust gas boilers on new ships, but there is little research on the EEXI index of existing ships. For operating ships, the thermal conductivity of exhaust gas boiler materials and other parameters has been fixed, so the main factors affecting the heat transfer coefficient of the exhaust gas boiler are exhaust gas temperature and flow velocity. Therefore, this paper studies the influence of engine exhaust temperature and flow rate on boiler heat transfer coefficients and optimizes it to achieve the EEXI value required by IMO. Firstly, based on the conservation of mass and energy as the basic equation, a heat exchange model of the exhaust gas boiler is established by using the hybrid modeling method and lumped parameter method. Secondly, for the given boiler, since other parameters are basically unchanged, the input temperature and flow rate of the model are changed by the control variable method, and the temperature of the boiler outlet is simulated by the test algorithm. Through the simulation operation of an Aalborg OC-type boiler, the results show that when the exhaust gas flow velocity is 15 m/s, 17.2 m/s, 22.4 m/s and 25 m/s, respectively, the heat transfer coefficient at each flow velocity increases first and then slowly decreases with the increase of temperature, and there is an optimal temperature at each velocity, which is 230 °C, 227 °C, 225 °C and 224 °C, respectively. The innovation of this study lies in the research on the inlet temperature and flow rate of the exhaust gas boiler of the operating ship based on the EEXI, and the relevant results are obtained, which provides theoretical guidance for the operation management of the exhaust gas boiler of the operating ship.

Keywords

Environmental effects of industries and plants, TJ807-830, TD194-195, exhaust gas boiler, Renewable energy sources, heat transfer coefficient, Environmental sciences, exhaust gas boiler; heat transfer coefficient; temperature and flow velocity, GE1-350, temperature and flow velocity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold