Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermomechanical Analyses of Alkali-Treated Coconut Husk-Bagasse Fiber-Calcium Carbonate Hybrid Composites

Authors: Deepak Verma; Manunya Okhawilai; Kheng Lim Goh; Mohit Sharma;

Thermomechanical Analyses of Alkali-Treated Coconut Husk-Bagasse Fiber-Calcium Carbonate Hybrid Composites

Abstract

Natural fiber-reinforced composites can contribute to reducing carbon footprint goals due to their ability to reduce overall product weight, bio-diverse feedstocks, and recyclability potential. In this work, natural fiber-based composites containing the reinforcement of coconut husk and bagasse fiber with calcium carbonate (CaCO3) ingredients were prepared and analyzed. The composites were analyzed for mechanical, thermomechanical, and morphological properties. The reinforcements were chemically functionalized using 5% w/v NaOH to enhance their interactions with the epoxy resins. The chemical functionalization created perforation on the fiber surface, improving the interlocking of fibres with the resin material and strengthening the mechanical performance of the composite. The composites developed using modified reinforcement treatment resulted in increased tensile strength (64.8%) and flexural strength (70%). The reinforcement treatment influenced the hydrophilicity, and the water absorption of treated composites was reduced more than five times compared to the unmodified composites. Scanning electron microscopy revealed morphological changes due to fiber modification, the underlaying mechanism of fiber contraction, and enhanced fiber matrix interface interlocking and adhesion strengthening. Thermal analysis confirmed that alkali treatment improves the crystallinity of the fiber and thereto the degradation temperature of treated fiber composites (both bagasse and coconut husk), which is 375.27 °C, the highest amongst the developed hybrid composites.

Country
United Kingdom
Keywords

thermogravimetric analysis, Environmental effects of industries and plants, natural fiber reinforced composites, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, natural fibers, alkali treatment, GE1-350, coconut husk, natural fibers; coconut husk; bagasse fiber; alkali treatment; thermogravimetric analysis; natural fiber reinforced composites, bagasse fiber

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Energy Research