

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data

doi: 10.3390/su15065269
Forest fires are becoming a serious concern in Central European countries such as Austria (AT) and the Czech Republic (CZ). Mapping fire ignition probabilities across countries can be a useful tool for fire risk mitigation. This study was conducted to: (i) evaluate the contribution of the variables obtained from open-source datasets (i.e., MODIS, OpenStreetMap, and WorldClim) for modeling fire ignition probability at the country level; and (ii) investigate how well the Random Forest (RF) method performs from one country to another. The importance of the predictors was evaluated using the Gini impurity method, and RF was evaluated using the ROC-AUC and confusion matrix. The most important variables were the topographic wetness index in the AT model and slope in the CZ model. The AUC values in the validation sets were 0.848 (AT model) and 0.717 (CZ model). When the respective models were applied to the entire dataset, they achieved 82.5% (AT model) and 66.4% (CZ model) accuracy. Cross-comparison revealed that the CZ model may be successfully applied to the AT dataset (AUC = 0.808, Acc = 82.5%), while the AT model showed poor explanatory power when applied to the CZ dataset (AUC = 0.582, Acc = 13.6%). Our study provides insights into the effect of the accuracy and completeness of open-source data on the reliability of national-level forest fire probability assessment.
Environmental effects of industries and plants, forest fire occurrence mapping, machine learning; MODIS; OpenStreetMap; random forest; forest fire occurrence mapping; WorldClim, TJ807-830, OpenStreetMap, TD194-195, Renewable energy sources, Environmental sciences, machine learning, MODIS, GE1-350, WorldClim, random forest
Environmental effects of industries and plants, forest fire occurrence mapping, machine learning; MODIS; OpenStreetMap; random forest; forest fire occurrence mapping; WorldClim, TJ807-830, OpenStreetMap, TD194-195, Renewable energy sources, Environmental sciences, machine learning, MODIS, GE1-350, WorldClim, random forest
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 43 download downloads 57 - 43views57downloads
Data source Views Downloads RIMI - University of Belgrade, Repository of the Institute for Medical Research 43 57


