Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data

Authors: Slobodan Milanović; Zoran Trailović; Sladjan D. Milanović; Eduard Hochbichler; Thomas Kirisits; Markus Immitzer; Petr Čermák; +3 Authors

Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data

Abstract

Forest fires are becoming a serious concern in Central European countries such as Austria (AT) and the Czech Republic (CZ). Mapping fire ignition probabilities across countries can be a useful tool for fire risk mitigation. This study was conducted to: (i) evaluate the contribution of the variables obtained from open-source datasets (i.e., MODIS, OpenStreetMap, and WorldClim) for modeling fire ignition probability at the country level; and (ii) investigate how well the Random Forest (RF) method performs from one country to another. The importance of the predictors was evaluated using the Gini impurity method, and RF was evaluated using the ROC-AUC and confusion matrix. The most important variables were the topographic wetness index in the AT model and slope in the CZ model. The AUC values in the validation sets were 0.848 (AT model) and 0.717 (CZ model). When the respective models were applied to the entire dataset, they achieved 82.5% (AT model) and 66.4% (CZ model) accuracy. Cross-comparison revealed that the CZ model may be successfully applied to the AT dataset (AUC = 0.808, Acc = 82.5%), while the AT model showed poor explanatory power when applied to the CZ dataset (AUC = 0.582, Acc = 13.6%). Our study provides insights into the effect of the accuracy and completeness of open-source data on the reliability of national-level forest fire probability assessment.

Country
Serbia
Keywords

Environmental effects of industries and plants, forest fire occurrence mapping, machine learning; MODIS; OpenStreetMap; random forest; forest fire occurrence mapping; WorldClim, TJ807-830, OpenStreetMap, TD194-195, Renewable energy sources, Environmental sciences, machine learning, MODIS, GE1-350, WorldClim, random forest

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 57
  • 43
    views
    57
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Top 10%
Average
Top 10%
43
57
Green
gold
Related to Research communities
Energy Research