Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower

Authors: Aynur Şensoy; Gökçen Uysal; Y. Oğulcan Doğan; H. Soykan Civelek;

The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower

Abstract

Mountainous basins are frequently called “natural water towers” because they supply essential water to downstream regions for irrigation, industrial–municipal use, and hydropower generation. The possible implications of climate change on water supplies have gained prominence in recent years, particularly in snow-dominated mountainous basins. The Euphrates River, a snow-fed transboundary river that originates from the Eastern part of Türkiye with several large dam reservoirs downstream, was chosen within this scope. The study reveals the impact of climate change on two snow-dominated headwaters, namely Karasu and Murat, which have a basin area of 41,109 km2. The impact of climate change is assessed across runoff regimes and snow dynamics for future periods (2024–2099). Global Climate Model (GCM) data sets (CNRM-CM5, IPSL-CM5A, EC-EARTH, MPI-ESM-LR, NorESM1-M, HadGEM2-ES) were downscaled by Regional Circulation Models (RCMs), provided from CMIP5 EURO-CORDEX domain for climate projections under RCP4.5 and RCP8.5 scenarios. Future projections of runoff and snow variables are predicted by two conceptual hydrological models, HBV and HEC-HMS. The results indicate a dramatic shrink in snow cover extents (>65%) and snow duration (25%), a decrease in snow water equivalent (>50%), and a timely shift (up to a month) in peak runoff through early spring in the runoff hydrograph for the last future period (2075–2099). The overall assessment shows that operations of downstream water systems should be reconsidered for future changes.

Keywords

runoff projections, Environmental effects of industries and plants, Euphrates River basin, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, climate change, snow dynamics, GE1-350, climate change; snow dynamics; runoff projections; Euphrates River basin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold