Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Ketoprofen in Fish: Life Cycle Assessment Using Sensors vs. Conventional Methodology

Authors: Elena Surra; Álvaro Torrinha; Cristina Delerue-Matos; Simone Morais;

Analysis of Ketoprofen in Fish: Life Cycle Assessment Using Sensors vs. Conventional Methodology

Abstract

Life cycle assessment (LCA) is a powerful tool to quantify the environmental burdens of different analytical techniques. This work assesses the environmental impacts associated with the use of a simple electrochemical carbon paper sensor (CPS) for ketoprofen detection in fish by LCA in comparison with traditional liquid high-performance chromatography (HPLC) with fluorescent detection. The results indicate significant advantages of CPS compared to HPLC in 16 of the 18 analyzed categories of impact (ReCiPe2016(H) method), with average CPS values 26% lower than for HPLC. This is due, in the categories of impact with higher environmental relevance, to the higher electric energy consumption during the “Analysis” step and, secondarily, to the use of acetonitrile as a mobile phase. On an annual basis, ketoprofen detection by CPS saves 333 kg 1.4 dichlorobenzene equivalents (1.4 DCB eq) of non-carcinogenic and 6.9 kg 1.4 DCB eq of carcinogenic human toxicities, 43.6 kg oil eq of fossil resources, and 91.4 kg CO2 eq of greenhouse gas emissions compared to HPLC. The high capital investment, maintenance costs, and reagents quantities required for HPLC mitigate the economic competitiveness of this traditional technique compared to the rapid and less complex portable CPS device under the studied conditions.

Keywords

ketoprofen, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, economic analysis, Environmental sciences, life cycle assessment, electrochemical analysis, carbon paper sensor; ketoprofen; life cycle assessment; electrochemical analysis; economic analysis, GE1-350, carbon paper sensor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research