Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review

Authors: Habib Ramezanzadeh; Davoud Zarehaghi; Ahmad Baybordi; Ali Chenari Bouket; Tomasz Oszako; Faizah N. Alenezi; Lassaad Belbahri;

The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review

Abstract

Biochar is known as a well-developed porous carbonaceous material with multifunctional abilities that can enhance the physical properties of soils. However, the lack of certainty about the consequences of biochar application to soils has limited its acceptability. Application of biochar can lead to a series of changes in the physical functions of soil, which are crucial in both agricultural and environmental management. The type of feedstock, pyrolysis conditions, size of particles, and rate of amendments are responsible for biochar effectiveness. Concurrently, the physical characteristics of soil, such as particle-size distribution, can intensify the impacts. Beside the physical attributes, the chemical components and interactions between biochar and the soil interface may play an important role. The chemical properties, such as the value of electrical conductivity, pH and zeta potential, are the remarkable parameters in the hydrophysical behavior. The summary proposes that biochar has a great contribution In enhancing the definite range of aggregation formation, reduction of compaction and shear strength frequency and/or intensity, improvement of microorganisms activity, and abundance. Simultaneously, biochar plays a devastating role by filling the pores, blocking the water flow pathways, and inhibiting macro fauna growth. Particle size of biochar as a major factor, and surface functional groups as a minor factor, affect the performance of biochar in improving the hydrophysical properties of amended soils. The increment in the dosage of biochar application is not promising to enhance the physical properties of soils. Therefore, it is necessary to find a balance between the consumption of biochar and promotion of the soil-water dynamic. This review provides an overview of fastidious perspectives on how to achieve an efficient and sustainable use of biochar in hydrophysical properties.

Related Organizations
Keywords

porosity, Environmental effects of industries and plants, pyrolysis condition, TJ807-830, TD194-195, Renewable energy sources, aggregation formation, Environmental sciences, biochar, compaction, GE1-350, hydraulic conductivity

Powered by OpenAIRE graph
Found an issue? Give us feedback