Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-Simulation of Electric Power Distribution Systems and Buildings including Ultra-Fast HVAC Models and Optimal DER Control

Authors: Evan S. Jones; Rosemary E. Alden; Huangjie Gong; Dan M. Ionel;

Co-Simulation of Electric Power Distribution Systems and Buildings including Ultra-Fast HVAC Models and Optimal DER Control

Abstract

Smart homes and virtual power plant (VPP) controls are growing fields of research with potential for improved electric power grid operation. A novel testbed for the co-simulation of electric power distribution systems and distributed energy resources (DERs) is employed to evaluate VPP scenarios and propose an optimization procedure. DERs of specific interest include behind-the-meter (BTM) solar photovoltaic (PV) systems as well as heating, ventilation, and air-conditioning (HVAC) systems. The simulation of HVAC systems is enabled by a machine learning procedure that produces ultra-fast models for electric power and indoor temperature of associated buildings that are up to 133 times faster than typical white-box implementations. Hundreds of these models, each with different properties, are randomly populated into a modified IEEE 123-bus test system to represent a typical U.S. community. Advanced VPP controls are developed based on the Consumer Technology Association (CTA) 2045 standard to leverage HVAC systems as generalized energy storage (GES) such that BTM solar PV is better utilized locally and occurrences of distribution system power peaks are reduced, while also maintaining occupant thermal comfort. An optimization is performed to determine the best control settings for targeted peak power and total daily energy increase minimization with example peak load reductions of 25+%.

Related Organizations
Keywords

CTA-2045, Environmental effects of industries and plants, TJ807-830, TD194-195, building energy model (BEM), Renewable energy sources, Environmental sciences, power distribution system; building energy model (BEM); HVAC systems; CTA-2045; control; distributed energy resources (DERs); co-simulation; machine learning (ML); generalized energy storage (GES); OpenDSS; optimization; smart grid; smart home, GE1-350, power distribution system, distributed energy resources (DERs), control, HVAC systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold